- 相關(guān)推薦
汽車無級變速器設計
摘 要
人們早就認識到無級變速器是提高汽車性能的理想裝置,并一直不懈的努力研究,努力追求實現(xiàn)這一目標。70年代后期,荷蘭VonDoorne’s Transmission 公司研制成功VOT金屬傳動帶并于1982年投放市場,推動CVT技術(shù)向?qū)嵱没~進了一大步。1987年美國福特公司首次在市場上小批量推出裝有這種VDT帶的CVT汽車,此后意大利菲亞特,日本富士重工和德國大眾等多家公司也推出了小批量的CVT汽車(如Ford的Fiesta、Scorpio;Fiat的Uon、Ritmo;Sabaru的Ecvt、WV的Golf等)。各國均視其為自動變速技術(shù)的嶄新途徑,已成為當前國際汽車的研究開發(fā)領(lǐng)域的一個熱點。
無極傳動CVT與其他自動變速器相比較,優(yōu)點是明顯的。其操縱方便性和乘坐舒適性可與液力變矩器相當,而傳動效率卻高得多,接近有級機械式自動變速器的水平。更主要的是,它能最好的協(xié)調(diào)車輛外界行駛條件與發(fā)動機負載,使汽車具有一個不存在“漏洞”的牽引特性,且調(diào)速時無需切斷動力充分發(fā)掘發(fā)動機的潛力,從而可顯著降低汽車的油耗,提高最大車速和改善超車的性能。無極傳動CVT特別受到非職業(yè)駕駛員的歡迎,因為它從根本上簡化了操縱,不僅可取消變速、離合器踏板,而且總是按駕駛員意圖控制發(fā)動機在最佳工作位置工作。此外,由于工作和控制原理相對簡單,CVT傳動完全可以做到比有級變速器(AT)傳動更緊湊,更輕,成本更低。
對于CVT這種具有廣闊使用發(fā)展前景的技術(shù),迄今國內(nèi)研究、應用的很少。我們在前人研究的基礎上,針對廣州本田即將生產(chǎn)的經(jīng)濟型轎車設計一種CVT,來替換原來的變速器,為以后CVT的研究和試驗打下基礎。
關(guān)鍵詞:無級變速器 結(jié)構(gòu)設計 自動壓緊
目 錄
摘要
1.緒論
1.1
1.2
1.3
1.4 汽車變速器的類型???????????????????1 汽車變速器的類型和特點 ???????????????1 采用無極變速器——CVT的汽車可以節(jié)油的原理 ?????2 實現(xiàn)汽車無級變速器——CVT大變速比、大轉(zhuǎn)矩的關(guān)鍵——無偏
斜金屬帶式無極變速傳動 ???????????????3
2.CVT的總體設計
2.1
2.2
2.3
2.4
2.5
2.6
2.7 原車的相關(guān)參數(shù)???????????????????5 帶傳動的分析????????????????????5 壓緊裝置的設計???????????????????8 齒輪設計計算????????????????????15 軸的設計計算????????????????????22 軸承的設計計算???????????????????30 錐輪處的鍵的設計計算????????????????31
3.變速器的調(diào)控分析
3.1 CVT的一般調(diào)控理論分析 ???????????????32
3.2 CVT最佳調(diào)控邏輯 ??????????????????34 4 .總結(jié) ?????????????????????38 5 .致謝 ?????????????????????39 6 .參考文獻 ???????????????????40
1. 緒論
1.1 汽車變速器的類型
目前汽車變速器按變速特點來分,可分為兩大類:一是有級變速器;二是無級變速器。按執(zhí)行變速的方式來分,可以分為自動和手動兩類。
1. 2 汽車變速器的類型和特點
1.2.1 液力變矩器
液力變矩器是較早用于汽車傳動的無級變速器,成功地用于高檔汽車的傳動中。由于傳動效率低,且變速比大于2時效率急劇下降,經(jīng)常僅在有級(2~3檔)變速器的兩檔中間實現(xiàn)無極變速,因此未能推廣開來。目前經(jīng)常作為起步離合器在汽車中使用。
1.2.2 寬V形膠帶式無級變速器
寬V形膠帶式無極變速器是荷蘭DAF公司在1965年以前的產(chǎn)品,主要用在微型轎車上,一共生產(chǎn)了約80萬輛。由于膠帶的壽命和傳動效率低,進而研究和開發(fā)了汽車金屬帶式無級變速器。
1.2.3 金屬帶式無級變速器
金屬帶式無級變速器是荷蘭VDT公司的工程師Van Dooren 發(fā)明的,用金屬帶代替膠帶,大幅度提高了傳動效率、可靠性、功率和壽命,經(jīng)過30~40年的研究,開發(fā)已經(jīng)成熟,并在汽車傳動領(lǐng)域占有重要的地位。目前金屬帶式無級變速器的全球總產(chǎn)量已經(jīng)達到250萬輛/年,在今后三年內(nèi)將達到400萬輛,發(fā)展速度很快。
金屬帶式無級變速器的核心元件是金屬帶組件。金屬帶組件由兩組9~12層的鋼環(huán)組和350~400片左右的摩擦片組成,其中鋼環(huán)組的材料,尤其是制造工藝是最難的,要實現(xiàn)強度高( b>2000MP),各層環(huán)之間“無間隙”
配合。以前只有荷蘭VDT公司掌握這種工藝,現(xiàn)在我國沈陽越士達無級變速器有限公司也已近掌握了這種技術(shù),并在重慶工學院建成了一條示范性生產(chǎn)線。
金屬帶式無級變速器的傳動原理,主、從兩對錐盤夾持金屬帶,靠摩擦力傳遞動力和轉(zhuǎn)矩。主、從動邊的動錐盤的軸向移動,使金屬帶徑向工作半徑發(fā)生無級變化,從而實現(xiàn)傳動的無級變化,即無級變速。
1.2.4 擺銷鏈式無極變速器
擺銷鏈式無級變速器是由德國LUK公司將擺銷鏈用于Audi汽車傳動的成功范例。與金屬帶式CVT不同的是,它將無級變速部分放在低速級,即最后一級。其原因是鏈傳動的多邊形效應在高速級是會產(chǎn)生更大的噪音和動態(tài)應力。所以其最新的結(jié)構(gòu)中,假裝了導鏈板以減少震動和噪聲。但是由于在低速級傳動中,要求傳遞的轉(zhuǎn)矩大,軸向的壓力較大,液壓系統(tǒng)的油壓也大(大約為8~9MPa),而摩擦盤式離合器所要求的油壓又不高,這
樣,液壓系統(tǒng)就比較復雜。由此看來,如果能進一步降低和消除多邊形效應,將會進一步提高此類傳動的水平,簡化整機設計、降低成本。
1.2.5 環(huán)盤滾輪式無級變速器
環(huán)盤滾輪式無級變速器是英國Torotrak 公司發(fā)明的無級變速器。運動和動力由輸入盤靠摩擦力傳給滾輪,滾輪降運動和動力靠摩擦力傳給輸出盤。當滾輪在垂直于紙面的軸向運動時,滾輪和兩個環(huán)盤的接觸點連續(xù)變化,輸入盤和輸出盤接觸點的回轉(zhuǎn)半徑連續(xù)變化,實現(xiàn)無極傳動。
1.3采用無極變速器——CVT的汽車可以節(jié)油的原理
由于汽車的發(fā)動機的進排氣系統(tǒng)是考慮了空氣流的動力學而設計的,由凸輪輪廓形塊決定進氣和排氣氣門的開閉。發(fā)動機在某一最佳轉(zhuǎn)速下能夠進氣充分、排氣充分、燃燒完全、能量利用充分、排氣污染少;但離開
這一轉(zhuǎn)速就會有進氣不充分、排氣不充分、燃燒不完全、能量利用差、油耗增加和排氣污染增加等問題。
汽車的車速是隨機的,在20~30km/h到150~180km/h之間變化。為了很好的利用發(fā)動機的動力和減少油耗,采用有級變速(MT和AT),在兩檔之間依靠發(fā)動機的轉(zhuǎn)速變化來適應車速的變化,因而發(fā)動機無法達到最佳的工作狀態(tài)。
采用液力變矩器的無級變速器,由于其工作原理是油作為動力傳動的介質(zhì),許多能量消耗在油的內(nèi)摩擦上,傳動效率低,通常為80~85%,比傳統(tǒng)的MT和AT大約費油10%~20%,而且液力變矩器轉(zhuǎn)差較大,效率較低。通常減速比不大于2,只能增加2~3檔有級變速,每兩檔間用液力變矩器實現(xiàn)無級變速。
無級變速器(CVT)可以使發(fā)動機在最佳狀態(tài)下工作,依靠變速器無級調(diào)速來適應汽車的各種速度,因此可以是發(fā)動機燃燒最好,排氣污染最小,達到節(jié)油的目的。
1.4 級變速——CVT大變速比、大轉(zhuǎn)矩的關(guān)鍵——無偏斜金屬
帶式無級變速傳動
對稱直母線錐盤情況下,金屬帶在變速過程中必然產(chǎn)生偏斜。此偏斜量限制了錐盤的半徑,也限制了變速比。因而對稱直母線錐盤所產(chǎn)生金屬帶的偏斜,一方面限制了車輛節(jié)油的經(jīng)濟車速范圍;另一方面限制了錐盤工作半徑的增加,也限制了可傳遞的轉(zhuǎn)矩,即傳動能力。目前,汽車CVT的變速比一般在Ra=5.5左右,通常用于排量在2.0L以下的汽車傳動中。
1.5 拋棄液壓加壓系統(tǒng),進一步節(jié)油
汽車金屬帶和擺銷鏈式無極變速器——CVT,是當前汽車自動變速器中
最具前景的傳動形式。目前汽車金屬帶式無級變速器絕大部分采用液壓加壓、電子系統(tǒng)控制方案。
發(fā)動機的動力通過變矩器離合器和液力變矩器傳給前進、倒檔離合器,液力泵產(chǎn)生的高壓油通過液壓缸將力施加給錐盤變速裝置,該力施加給金屬帶組件產(chǎn)生摩擦力,將主動輪的轉(zhuǎn)矩傳遞給從動軸,然后通過減速裝置,經(jīng)減速器輸出給車輪。
這種方案的優(yōu)點在于除了金屬帶傳動的全新技術(shù)以外,全部采用了成熟技術(shù),可行性好。但與成熟的AT(自動變速器)技術(shù)一樣,有一個重要的弱點,即是均采用耗能的液壓伺服系統(tǒng)。AT和MT(手動變速器)均為齒輪傳動,AT比MT多耗油15%左右,其原因在于液壓私服系統(tǒng)耗能。采用CVT的汽車,由于CVT可使發(fā)動機在最佳區(qū)域工作,因而達到節(jié)油的目的。目前其油耗與采用MT的汽車持平。
如果拋棄液壓加壓系統(tǒng),將避免能量的損失,達到更加節(jié)油的目標。
2. CVT的總體設計
2.1 原車相關(guān)參數(shù)
本次設計的各項參數(shù)如下:
2.2 帶傳動的分析
2.2.1 變速方式
在金屬帶傳動中,帶輪由圓錐盤組成,利用圓錐盤的軸向移動來達到變速。這種變速機構(gòu)緊湊,傳動可靠,應用范圍廣泛。在這種變速器中,有的只是一個帶輪可軸向移動,另一個帶輪的直徑是固定不變的,這種情況下變速,必須同時改變兩輪的中心距,這在我們的設計中是難以布置和難以控制甚至難以達到的。另一些機構(gòu)兩輪都起變速作用,這又分為兩種情況:A、兩輪的兩邊都可以調(diào)節(jié);B、只有一邊可以調(diào)節(jié)。要調(diào)節(jié)就必須有控制或壓緊機構(gòu),在A中情況下,機構(gòu)必然變得復雜和龐大,而B情況可以有效地避免這種情況的發(fā)生。
本方案采用一級變速就可以達到設計要求。
在金屬帶的選取上,我們選用了現(xiàn)有的自制金屬帶,結(jié)構(gòu)參數(shù)為:上
底寬32mm,高15mm,工作中徑為26mm。
綜上所述:本方案在帶輪的結(jié)構(gòu)選擇單級,兩個帶輪都是面可調(diào)的金屬帶形式。
2.2.2 基本運動關(guān)系
1)帶輪的移動距離
帶輪的移動距離受到兩邊帶輪相碰的位置和帶達到帶輪內(nèi)邊緣的位置所限制。
x=D-d
2tg?
2=b1
2
因此,在雙向移動的情況下:
式中 ?——帶輪兩邊的夾角;
b1——帶底面的寬度,b1=bp
bp——帶中性層的寬度;
h2——中性層至底面的距離,h2=h-h1 (h1為帶中性層面至頂面的距離),在帶輪移動的情況下,軸向移動距離為上式中X的二倍。
2)CVT傳動比及調(diào)速的范圍
為了具有較高的傳動效率,且設計和制造的方便,兩個帶輪的尺寸設計為同樣大小。要擴大變速的范圍,須增加帶的寬度,減小帶輪的槽角或減小帶輪的直徑d。
帶輪的楔角太小容易使帶楔在槽中,此外,楔角越小,帶上受到的橫向力就越大,也容易使帶撓曲,所以楔角不能太小。經(jīng)驗值為22-24度。我們選用28度的楔角。
減小帶輪的直徑d會使帶的疲勞強度降低,所以一般也不宜采用比規(guī)???-2h2tg ? 2??
定直徑小的帶輪直徑。根據(jù)已有的資料顯示:帶輪的工作直徑可以達到75mm,而傳動比的范圍可以達到0.45-2.22,在本設計中,我們將帶輪的最小工作直徑定為80mm,以使其工作可靠,壽命更高。
材料的選擇:鋼帶,摩擦副表面采用硼化鎢和硼化鉬基合金材料(金屬陶瓷)
這種合金主要用于在高溫下工作的易磨損鋼表面,以含鉬的坡莫合金(2MO,81Ni,17Fe)和鎳鉻合金作粘結(jié)金屬,主是熱壓發(fā)制造的。性質(zhì)
如下:
摩擦副的摩擦系數(shù)為0.3.
由相關(guān)參數(shù)得知:
i21max=3.090
i
21min=0.846
調(diào)速范圍 Rb=
采用對稱調(diào)速,imax=i21maxi21min=3.0900.846=3.576 =
1
imax==1.981 11.981=0.505 imin=
根據(jù)金屬帶的結(jié)構(gòu)參數(shù),確定CVT錐輪的結(jié)構(gòu)。
取最小工作直徑Dmin=80mm,則最大工作直徑
Dmax=imax?Dmin=1.981?80=151.36mm
CVT錐輪的結(jié)構(gòu)圖
2.3 壓緊裝置的設計
2.3.1 曲面壓緊結(jié)構(gòu)
所有的基于摩擦的機械式CVT都需要在工作副上施加一定的壓緊力,以使它們無滑動地可靠工作。在自動壓緊的應用中,壓緊力應根據(jù)當前的傳動比和力矩調(diào)整到最佳值,從而在保證工作可靠的前提下,減少磨損和延長壽命。當前流行的做法是:用一套自動控制的渦輪系統(tǒng)。但,這樣的
系統(tǒng)不但增加CVT的成本,還使轎車在工作的某些方面變壞,并且導致極大的燃油消耗,這些都會是中國家庭轎車的不適宜因素。
為此,我們嘗試開發(fā)了一種幾乎沒有功率消耗的“純機械”自壓緊裝置。這種裝置的工作原理和紡織工業(yè)中應用的某些CVT壓緊機構(gòu)有些類似,但已經(jīng)除去了諸如允許軸向移動和傳動比范圍大小的缺陷。在輸入軸上有三個相互間隔120度均勻分布的傳動銷,每個銷和位于可軸向移動的帶輪后部的銷的導槽曲面接觸。接觸力的周向力取決于帶輪所傳遞的力矩Mt,而軸向力緊緊地將帶輪和V—帶壓向另一帶輪以產(chǎn)生必需的摩擦。于是,轉(zhuǎn)動和功率就可以通過壓緊的摩擦副和V—帶傳遞到輸出軸。
三個銷導槽斜面的傾斜度tgλ=2f*D(x)/dτcos 在這里:
f——摩擦副的摩擦系數(shù) D(x)——帶的工作直徑 x——帶輪的軸向移動量 dτ——銷的工作直徑 ψ——帶輪的楔角
這個斜率函數(shù)的意圖是當可動帶輪被傳動比控制裝置移動到不同位置時,接觸力的軸向分力相應不同的傳動比能產(chǎn)生不同的比例系數(shù)來適配輸入軸轉(zhuǎn)矩以使壓緊力等于或稍大于臨界力,這樣,摩擦工作副就不會有相對的滑動。在特例演變下,這種自壓緊裝置允許x=24mm的軸向相對位移,同時傳動比范圍可達R≈6。樣機測試結(jié)果顯示:這種裝置基本滿足實際需要,并且具有結(jié)構(gòu)簡單,成本低廉的優(yōu)點。我們堅信:經(jīng)過發(fā)展和完善,這種裝置是有真正有應用價值的。
?ψ?
? 2??
其關(guān)鍵問題是曲面S(x)的確定,以下就是有關(guān)計算: 1)帶輪與皮帶接觸處要求軸向壓緊力為:
QD=
kfMfD(x)
cos
?
2
(1)
式中,kf——工況系數(shù),可以取1.2。
壓緊力隨X的不同(實際是工作直徑D(x)的不同)而變化。 2)自動壓緊裝置產(chǎn)生的軸向壓緊力的表示:
?
2fDx
λ=ctg
?
dpcos?2?
?
?-ρ (2) ??
式中,dp——平均工作直徑。即中徑; λ——曲面的升角;
ρ——是滾柱銷和曲面接觸處的等效摩擦角,即ρ=ctg(f),f是等效摩擦系數(shù),一般≤0.1 3)平橫條件:
若不計入附加彈簧的輔助壓緊力,有Qa≥Qd,為系統(tǒng)不打滑的工作條件,
?
2fDx
λ=ctg
?
dpcos?2
由(1),(2)關(guān)系式可得到。
??
?-ρ (3) ??
4)皮帶工作直徑與軸向位移的關(guān)系
D=D(x)=d+x?ctg(?/2) 式中,d——最小工作直徑
將上式代入(3)式中,即確認λ(x)。 5)確定S(x)
由關(guān)系式tgλ=dx/ds,并利用正切和角切以及(3)式,可以推出:
dpcos
?
+2ff'D(x)
S(x)=
?
2fD(x)-f'dpcos
? (4)
2
若設計中CVT傳遞的最大扭矩,最大功率和相應的轉(zhuǎn)速已知, 可以確定Qamax和Qamin及λmax和λmin;再根據(jù)dp,f和d等 可以利用(4)式求得S(x)。代入各已知量后得到:
S(x)=
?c
c1+c2x
3
+c4x
x=
c1c4-c2c3
c4
2
ln(c3+c4x)+
c2c3c4
2
+
c2c4
x
式子中c1,c2,c3,c4均為常數(shù)。 2.3.2 加壓彈簧的設計
加壓裝置的主要作用是在汽車起步時,使金屬帶與錐輪彼此壓緊,產(chǎn)生恰當?shù)哪Σ亮=fQ,足夠傳遞運動和動力。 軸向壓緊力Qa=
k
f
p
2f
cos
?
2
A. 輸入軸上的加壓彈簧
當輸入轉(zhuǎn)速最低時,彈簧工作高度H2最小,軸向壓緊力最大
Qmin=
kfp2f
cos
?2
=
1.56?38?10
560060
3
cos
-3
282
=8.19KN
?3.14?80?10?0.3
當輸出轉(zhuǎn)速最高時,彈簧工作高度H1最大,軸向壓緊力最小
Qmin=
kfp2f
cos
?
2
=
1.56?38?10
560060
3
cos
-3
282
=4.33KN
?3.14?151.36?10?0.3
根據(jù)幾何關(guān)系,?x=(Dmax-Dmin)?tg
?Q?x
8.19-4.33
17.8
?
2
=(151.36-80)?tg
282
彈簧剛度K=彈簧設計:
=
?10=216.9N/mm
3
1)根據(jù)工作條件選擇材料并確定其許用應力
因彈簧在交變作用力下工作,按1類彈簧考慮,F(xiàn)選用硅錳合金彈簧鋼絲,估取彈簧中徑D2=90mm,d=18mm。查表知【τ】=471 2)根據(jù)強度條件計算彈簧鋼絲直徑
選取旋繞比C=5,則補償系數(shù)
K=
4C-14C-4
+0.615C
=
4?5-14?5-4
+0.6155
=1.31
試算彈簧直徑
d===17mm
上值與原估去值相近,且為標準值。則
D=D2+d=90+18=108mm
3)根據(jù)剛度條件,計算彈簧全圈數(shù)
Gd?x8PmaxC
3
n==
78500?18?17.88?8190?5
3
=3.07
取n=3圈。 4)結(jié)構(gòu)設計
輸入軸彈簧參數(shù)見下表
5)驗算穩(wěn)定性
細長比b=1.11<2.6,穩(wěn)定 B. 中間周上的加壓彈簧
當輸出轉(zhuǎn)速n2最低時,彈簧工作高度H1最大,軸向壓緊力最小
Qmin=
k1M
2
fDmax
cos
?
2
=
1.3?64.8151.36?10
3
-3
?0.3
cos
282
=1.8KN
M
2
=
Pn
=2?
38?10560060
=64.8N?M
?3,14
當輸出轉(zhuǎn)速n2最高時,彈簧工作高度H2最大,軸向壓緊力最大
kfM
Qmax=
2
fDmax
cos
?
2
=
1.3?64.880?10
-3
?0.3
cos
282
=3.406kN
282
o
根據(jù)幾何關(guān)系,?x=(Dmax-Dmin)?tg
?Q?x
3.406-1.8
17.8
?
2
=(151.36-80)?tg
彈簧剛度 K=彈簧設計:
=
?10=90.22N/mm
3
1) 根據(jù)工作條件選擇材料并確定其許用應力
因彈簧在交變作用力下工作,按1類彈簧考慮,F(xiàn)選用硅錳合金彈簧鋼絲,估取彈簧中徑D2
=90mm
,d=16mm。查表知[τ]=
471。
2) 根據(jù)強度條件算彈簧鋼絲直徑
直徑旋繞比C
K=
=5.625
,則補償系數(shù)
0.615C
=
4?5.625-14?5.625-4
+0.6155.625
=1.27
4C-14C-4
+
試算彈簧鋼絲直徑
d≥==11.5mm
原估取值安全,且為標準值。則D=D2+d=90+16=106mm 3) 根據(jù)剛度條件,計算彈簧圈數(shù)
n=
Gd?x8PmaxC
3
=
78500?16?17.88?3406?5.625
3
=4.6
取n=5圈 4) 結(jié)構(gòu)設計
程序同輸入軸,結(jié)果如下表:
5) 驗算穩(wěn)定性
細長比b=1.06≤2.6,穩(wěn)定。
2.4 齒輪的設計計算
2.4.1 前進檔減速齒輪 1) 減速比
i1=
ii21max
=3.091.892
=1.633
2) 選擇齒輪類型,材料,精度及參數(shù) A. 選用直齒圓柱齒輪傳動
B. 選擇齒輪材料:選取大小齒輪材料均為40Cr,并經(jīng)調(diào)質(zhì)及表面淬火, 齒面硬度為48~55HRC. C. 選擇齒輪為7級精度 D. 選小齒輪齒數(shù)Z1
=36
, 大齒輪齒數(shù)Z2
=i1Z1=1.633?36=59
3) 齒面的接觸強度設計
d1t=2.3A. 確定公式內(nèi)的各計算數(shù)值 a) 選擇載荷系數(shù)Kt
=1.25
b) 計算小齒輪傳遞的轉(zhuǎn)矩
T1=95.5?10?
5
P1n1
=95.5?10?
5
385600/1.892
=1.23?10Nmm
5
c) 選取齒寬系數(shù)φd
=0.7
= d
) 材料的彈性影響系數(shù)ZE
e) 按齒面硬度中間值52HRC查得大、小齒輪的接觸疲勞強度極限
σHlim1=σHlim2=1170MPa
f) 應力循環(huán)次數(shù)
N1=60n1jLh=60?5600/1.892?1?8?300?10=4.26?10
9
g) 查得接觸疲勞壽命系數(shù)Kn1 h) 計算疲勞許用應力
=0.89,Kn2=0.92
取失效效率為1%,安全系數(shù)S=1
[σ]H1
B. 計算
=KHN1σ
Hlim1
/S=1041.3,[σ
]H2
=KHN2σ
Hlim2
/S=1076.4
a) 試算小齒輪分度圓直徑d1t,代入[σ]H中較小的值
d1t=2.3
=2.3=52.77mm
b) 計算圓周速度V
V=
πd1tn1
60?1000
=
π?52.77?5600
60?1000?1.892
=8.17m/s
c) 計算齒寬b
b=φdd1t=0.7?52.77=36.94
d) 計算齒寬和齒高之比
模數(shù) m1齒高 h
=d1t/Z1t=52.77/30=1.76
=2.25?m1=2.25?1.76=3.96
b/h=36.94/3.96=9.33
e) 計算載荷系數(shù)
根據(jù)V
=8.17m/s
,7級精度,查得動載荷系數(shù)KV
=1.17
直齒輪,假設KAFt
KA=1.75
/b≥100N/mm,查得KHα=KFα=1.1,使用系數(shù)
KHβ=1.287,KFβ=1.25
K=KAKVKαKHβ=1.75?1.17?1.1?1.287=2.90
f) 按實際的載荷系數(shù)校正所算得的分度圓直徑,得
d1=d1t
=52.77?
=69.86mm
g) 計算模數(shù)m
m=d1/Z1=69.80/30=2.33
4) 按齒根彎曲強度設計
m=A) 確定公式內(nèi)的計算數(shù)值
m a) 按齒面硬度中間值52HRC查得大、小齒輪的接觸疲勞強度極限
σHlim1=σHlim2=680MPa
b) 查得接觸疲勞壽命系數(shù)KN1=0.88,KN2=0.89
=1.3
FE2
c) 計算彎曲疲勞許用應力,取安全系數(shù)S
[σ]F1
=KFN1σ
FE1
/S=406.31,[σ
]F2
=KFN2σ
/S=465.54
d) 計算載荷系數(shù)K
K=KAK1KαKFβ=1.75?1.1?1.17?1.25=2.82
e) 查取齒輪系數(shù)
YFα1=2.52,YFα2=2.343
f) 查取應力校正系數(shù)
YSα1=1.625,YSα2=1.678
g) 計算大小齒輪的YFαYSα/[σ]F并加以比較
YFα1YSα1/[σYFα2YSα2/[σ
]F]F
=2.52?1.625/460.31=0.0089=2.343?1.687/465.51=0.0085
h) 計算模數(shù)m
m≥
==2.14
對比計算結(jié)果,由齒面疲勞強度計算的模數(shù)m略大于由齒根彎曲疲
勞強度計算的模數(shù),由于齒輪的模數(shù)m的大小主要取決于彎曲疲勞強度所決定的承載能力,而齒面接觸的疲勞強度所決定的承載能力,僅與齒輪的直徑有關(guān),可取由彎曲強度計算得的模數(shù)m準值m
=2.14
,并就近圓整為標
=2.15,按接觸疲勞強度算得的分度圓直徑d1=69.86mm
Z1=d1/m=69.86/2.25=30.14,取Z1=31 Z2=iZ1=1.633?31=51
5) 幾何尺寸計算 A) 計算分度圓直徑
d1=Z1m=31?2.25=69.75mm d2=Z2m=51?2.25=114.75
mm
B) 計算中心距
a=(d1+d2)/2=(69.75+114.75)/2=92.25
C) 計算齒輪寬度
b=φdd1=0.7?69.75=48.825
圓整:B2
D) 驗算 F1
=
=49, B1=542T1d1
5
=
2?1.23?10
69.75
=352.7≥100,合適
2. 4. 2 倒檔減速齒輪
i倒=
i倒0iCVT
=3.1421.981
=1.3=1.28
=1.661
取倒檔小齒輪與惰輪的減速比i倒1 取倒檔惰輪與大齒輪的減速比i倒2
1) 計算各齒輪參數(shù)
由于結(jié)構(gòu)的原因,倒檔大,小齒輪要有一定的間隙。故取倒檔小齒輪的結(jié)構(gòu)參數(shù)與前進檔小齒輪相同。 令d1
=69.75mm,Z1=31,B1=54mm,m=2.25,則
d中=d1i倒1=69.75?1.3=90mmZ中=Z1i倒1=31?1.3=40
,
,
B中=B1-5=49mm
,
,
d2=d中i倒2=90?1.28=117mm
Z2=Z中i倒2=40?1.28=52B2=B中=49mm
,
2) 驗算
按齒面彎曲疲勞強度校核公式σF確定式中各值 K值 KFβ1 KFβ KFβ2 KA
=1.18 KV1=10.8
=
2KT1YFαYSα
φdmZ1
32
≤[σ
]F
K1
=2.771
=KFβ中=1.20
KV=KV中=10.8 KF=KFZ中=2.794=10.8
=1.21
KV2 K2
=2.798
=1.75
Kα
=1.1
計算T值: T1
=1.23?10Nmm
5
T中 T2
=95.5?10?=95.5?10?
5
5
38
5600/1.891?1.3
385600/3.142
=1.6?10Nmm
5
5
=2.036?10Nmm
YFα1
=2.508
YSα1
=1.632
YFα中=2.40YSα中=1.67
YFα2
=2.312
YSα1
=1.706
φd=0.7
=1170MPa
查得 σHlim [σ]F1 [σ]F
=
σFE
=680MPa
1.18?680
1.4
=573.1
=K
σFN
FE
/S=[σ
]F中
=
1.2?6801.4
=582.9
[σ]F2 σF1 σF中 σF2 σF
==
1.21?680
1.4
=587.7
5
=279.8
2?2.771?1.23?10?2.508?1.632
0.7?2.25?40
3
2
=
2?2.794?1.594?2.40?1.67
0.7?2.25?40
5
3
3
=279.8
=
2?2.798?2.306?10?2.312?1.706
0.7?2.25?51
3
2
=208.4
≤[σ
]F 所以安全
2. 4. 3 減速軸距的調(diào)整
考慮到倒檔大小齒輪不能直接接觸,故軸距
a
>
d1+d2
2
=
69.75+117
2
=93mm
調(diào)整中心距,取a
=107mm
,
=81.28mm
調(diào)整前進檔齒輪,令m 前進擋小齒輪d1 前進擋大齒輪d2 Z1 Z2
==d1md2m==81.282.252.25
=2a1http://www.stanzs.com/news/55703B46C4C53E9D.html+i
=2.25=
2?1071+1.633
=id1=81.28?1.633=132.72mm
=36.12,取Z1=36
132.72
=58.99,取Z2=59
圓整 d1 d2 a b 圓整為 B2
=2.25?36=81mm
=2.25?59=132.75mmd1+d2
2
=
81+132.75
2
==106.875mm
=φdd1=0.7?81=56.7mm
=57mm
, B1
=62mm
驗算:按齒根彎曲疲勞強度計算
σ
=
2KT1YFαYSα
=
2?2.82?1.23?10?2.52?1.625
0.7?2.25?36
3
2
5
F
φdmZ1
32
=274.9MPa≤[σ]F
2. 5 軸的設計計算
2. 5. 1 輸入軸的設計 1) 選擇軸的材料
選取45號剛,調(diào)質(zhì),HBS=230 2) 初步估算軸的最小直徑
取發(fā)動機最大轉(zhuǎn)矩時計算,此時,功率P
=25.12KW
n
=3200N/min
取A0
=110
d≥A03
P1n=110
25.123200
=21.86mm
3
3) 軸的結(jié)構(gòu)設計,初定軸徑及軸向尺寸
考慮錐輪的結(jié)構(gòu)要求及軸的剛度,取裝錐輪處軸徑dmin
裝配草圖如圖所示。
=30mm
,軸的
兩軸承支點間的距離為L1
=245mm
4) 按彎扭合成應力校核軸的強度 A. 作出軸的計算簡圖 a) 計算壓軸力
錐輪的當量摩擦系數(shù)
fV=f/sinθ=0.3/sin14
=1.24
α=180
-
D1-D2
α155.5180
00
?60
=155.5
fVα=1.24?
?3.14=3.36
最大有效拉力Fea
=1000Pea/V=1.25?1.25?38?1000/44.36=1.34KN
由于鋼帶伸縮彈性小,可忽略離心力對預緊力的影響。故 鋼帶預緊力
F0=
12Fea
ee
fVαfVα
+1-1
=
12
?1.34?10?
3
ee
3.363.36
+1-1
=718N
徑向壓軸力
Q=2F0sinα/2=2?718?sin155.5/2=1403N
b) 計算軸的壓緊力
Qmax=
fVPVminμ
cos14
=
1.56?38?10560060
3
cos14
=5.1KN
?3.14?133.5?0.3
c) 計算支反力
將輸入軸與中間軸形成的平面定為水平面,則垂直面沒有力的作用
RA=
1403245
?84=481N
RB=
Q-RA=1403-481=922N
d) 作出彎矩圖
M=RALA=481?(245-84)?10
-3
=77.4Nm
e) 作出扭矩圖,取a=0.6,
aT=0.6?75=45Nm
f) 計算彎矩
M
ca
=M
2
+(αT)2
=77.4+
45
22
=89.53Nm
g) 校核軸的強度
按第三強度理論,計算彎曲應力
σ
ca
=
MW
ca
對軸的抗彎截面系數(shù)W,采用近似算法
W=0.1d
3
=0.1?0.030
3
=2.7?10
-6
-1
σ
ca
=
MW
ca
=
89.532.7
?10
6
=33.2MPa≤[σ
]
所以安全。
2. 5. 2 中間軸的設計計算 1) 選擇軸的材料
選取45號鋼,調(diào)質(zhì),HBS=230 2) 初步估算軸的最小直徑 功率P 轉(zhuǎn)速n 取A0
=25.12KW
=3200/1.892=1691N/min
=110
d≥A0p1n1
=110
3
25.121691
=27.1mm
3) 軸的結(jié)構(gòu)設計,初定軸徑及軸向尺寸
考慮錐輪的機構(gòu)要求及軸的剛度,以及通用性要求取裝錐輪處軸徑
dmin=30mm
軸的裝配草圖如圖所示。
4) 按彎扭合成應力校核軸的強度 A. 做出軸的計算簡圖 a) 計算徑向力
作用在中間軸上的壓軸力,大小與作用在輸入軸上的壓軸力相同,方向相反。
即徑向壓軸力Q
=1403N
中間軸上減速齒輪產(chǎn)生的徑向力 減速齒輪傳遞的轉(zhuǎn)矩T
=Pn=2?
3856001.891?60
?3.14
=123.0Nm
產(chǎn)生的徑向力,F(xiàn)1
Fr Fn b) 計算支反力
=
2T1d1
=
2?123.069.75?10
-3
=3527N
=F1tgα=3527?tg20
=1283.7N
=F1/cosα=3527/cos20
=3753.4N
將輸入軸與中間軸形成的平面定為水平面H,垂直面V垂直與水平面H。
R2H=Q/189?(189-122
)=1403
/189?67=497N
R3H=
F1/223?(223-53.5)=3527/223?169.5=268N
R1V=
Fr223
(223-53.5)=
1283.7223
(223-53.5)=975.7N
R3V=Fr-R1V=1283.7-975.7=308N
c) 作出彎矩圖
M1=R3HL1=2681?53.5?10
-3
=134.4Nm
M
2
=R2HL2=497?122?10
-
3
=60.6Nm
M
3
=R3VL3=308?53.5?10
-
3
=16.5Nm
d) 作出扭矩圖
取α
=0.6
,α
T
=0.6?123.0=73.8Nm
e) 計算彎矩
MM
ca1
==
M1+(αT
2
)2
=60.6+73.8
22
=95.5Nm
2
2
ca2
M1+M
223
+(αT)2
=
.4+16.5+73.8
2
=162Nm
f) 校核軸的強度
按第三強度計算理論,計算彎曲應力
σ
ca
=
MW
ca
=0.1d
3
W 對軸的抗彎截面系數(shù)W,采用近似算法,
=0.1?0.030
3
=2.7?10
-6
σ
ca
=
MW
ca
=
1622.7
?10
6
=60MPa≤[σ
-1
]
所以安全。
其它軸尺寸見零件圖,他們受力小于前面兩軸,故安全。
2. 6 軸承的設計計算
主動軸上軸承的設計計算。計算壽命,本著CVT變速器五年壽命,按每天工作八小時,每年300天工作日
則軸承計算壽命Lh
=8?300?5=12000小時
主動軸承采用兩對軸承,內(nèi)側(cè)選用46406型角接觸軸承。外測選用7206型圓錐滾子軸承。通過不同的尺寸公差保證角接觸球軸承主要承受徑向力,圓錐滾子軸承承受軸向力。 1. 對角接觸軸承,派生軸向力S
=0.68R
S1=0.68R1=0.68?841=572NS2=0.68R2=0.68?922=627N
所以軸向力A2
A1
=S2=627N
=Fa+S2=627N
對軸承2,當量動載荷P取
fp=1.2,f1=1.00
=fp(XR+YA
)
,取X=1,Y=0
=70Kn
,A/R
=627/922=0.68≤e
P=1.2?(1?922+0?627P3f1
60nLh10
6
)=1106
N
C=
=
11061.00
60?5600?12000
10
6
校驗合格。
2. 對圓錐滾子軸承,由于只承受軸向力,P
要求軸承的工作壽命為一年,Lh
=fpA=1.2?5.1=6.1KN
=8?300=2400小時
C=
pf1
60nLh10
6
=
6.11.00
60?5600?2400
10
6
=173Kn
采用車用特制軸承,采用特制加工工藝,可以達到使用標準。 其它軸承計算忽略。
2. 7 錐輪處的鍵的設計計算
主要失效形式是工作面壓潰 選用8?36 按聯(lián)接強度校核
σ
=2T?10kld
3
F
≤[σ
]p
最大轉(zhuǎn)矩時,T鍵的工作長度l
σ
=75
, 接觸高度K
=0.5h=0.5?7=3.5mm=30mm
3
=36mm
,軸的直徑d
3
P
=
2T?10kld
=
2?75?10
3.5?36?30
=39.7MPa≤[σ]P
校驗安全。
其它鍵參數(shù)見裝配圖,檢驗略。
3. 變速器的調(diào)控分析
3. 1 CVT的一般調(diào)控理論
對于車用的發(fā)動機,在任一給定油門開度α下總有一個最佳轉(zhuǎn)速nd,
是得對應的發(fā)動機輸出功率Pd為最大或?qū)挠秃穆蔳d為最低。將不同油門開度下發(fā)動機特性(如速度特性)的最大功率點或最低油耗率點連成曲線,便得到最佳發(fā)動機曲線D或最佳經(jīng)濟曲線E, 如下圖a所示。這兩條曲線也容易轉(zhuǎn)化成如圖b所示的nd—a曲線。E, D兩條曲線及其所包圍的區(qū)域是CVT調(diào)速控制的重要依據(jù)。
隨著工況(油門開度,工作負荷)CVT須適當調(diào)整變速傳動比從而改變整個傳動系的傳動比,使車速發(fā)生相應的變化,以保證發(fā)動機轉(zhuǎn)速ne和功率Pe正好是最佳工作線E或D上的某個確定值nd和Pd,即保證在最佳工況下工作。根據(jù)CVT調(diào)控的一般理論(又稱“等轉(zhuǎn)速穩(wěn)態(tài)調(diào)節(jié)理論),其傳動比i的變化按下述方法確定。
為敘述方便,設離合器完全結(jié)合不打滑,CVT初級軸與發(fā)動機軸可視為剛性聯(lián)接,則傳動比i與發(fā)動機轉(zhuǎn)速ne(r/min)及車速V(km
i
/h)有如下關(guān)系
=0.377Rrne/ioV=Ane/V
(1)
式中 R——驅(qū)動輪波動半徑m,可視為常數(shù)
io——整個驅(qū)動鏈除CVT以外的固定傳動比,為常數(shù) A——0.377
于是,使ne
Rr/io=nd
的理想或目標傳動比可表為
(2)
id=0.377Rrnd/ioV=And/V
在行車中克通過傳感器測得ne,V,從而確定當前實際傳動比i同時根據(jù)存入微機ROM中的圖b及測得的a確定nd及id。若ne>nd,i>id,則發(fā)出并執(zhí)行減小傳動比的指令;反之則發(fā)出執(zhí)行增大傳動比的指令,直至ne=nd,i=id。這樣形成了一個閉環(huán)調(diào)控的基本邏輯。
然而,上述調(diào)控理論或邏輯至少有如下不足之處:首先,它只指出了傳動比調(diào)節(jié)變化的方向,沒有指出變化的量或速率應該遵循什么規(guī)律;其次,它只從系統(tǒng)的穩(wěn)態(tài)功率平衡來考慮問題,對于常處于過渡平衡狀態(tài)中的實際車輛,往往會引起某種“誤操作”,造成整車性能的惡化;此外,這種調(diào)控顯然屬于滯后被動跟隨式的,必須等到實際與理想工作參數(shù)有了偏差后(ne不等于nd,i不等于id)才進行干預,難以實現(xiàn)最佳調(diào)控。
人們曾提出了一些半經(jīng)驗的調(diào)控規(guī)律,試圖改善上述不足之處。例如有人用以下公式來確定傳動比調(diào)控的方向和調(diào)速率
di/d=k1(id-i)+k2did/dt (3)
式中 k1,k2——待定的非常系數(shù)
顯然對不同的車輛和發(fā)動機,都要經(jīng)過大量的實驗才能將其確定,故此法至少實用性方面受到了較大的限制。有鑒于此,尋找一種更合理適用的CVT調(diào)控理論或邏輯就十分有必要了。
3.2 CVT最佳調(diào)控邏輯
3.2.1 過渡狀態(tài)可得
根據(jù)【7】,對理想調(diào)速可得,式(2)微分
diddt
=
0.377RV?dndnddV?iddV?A?dnd
-=- ? ?
i0VVdt?V?dtAdt??dt
(4)
這是一個重要的公式,其物理意義可以理解為:若在當前過渡(瞬態(tài))平衡狀態(tài)下正好有ne
=nd,i=id
,則當任一原因引起車速V,加速度
α及理想發(fā)動機轉(zhuǎn)速nd發(fā)生變化時(如加、減速過程,油門變化,路況
及載荷變化等),CVT必須使發(fā)動機按上式確定的調(diào)速率調(diào)節(jié)傳動比,才能使發(fā)動機始終保持在最佳特性曲線E或D下工作,恒有i得與整車特性的最佳匹配。
式中第一項反應油門開度α變化對調(diào)速率的影響,若α必然有dnd
/dt=0。dnd/dt
=id和pe=pd
獲
=cosst
,則
可由兩次采樣所計算的nd之差與采樣時間間
/dt=(dnd/dα)dα/dt
/dt
隔之比來確定;也可按dnd來計算,其中dnd
/dα
存
放在ROM中的圖2b曲線斜率,dα則可通過傳感器測得的α微分獲
得。式中第二項代表驅(qū)動功率與阻力功率不平衡程度的貢獻,若兩者平衡則加速度a
=dV/dt=0。分析該項(設α=cosst,dnd/dt=0)可知,
在低速起步階段因車輛V較小而id和dV
/dt
較大,可獲得較大的調(diào)速率,
使V迅速上升;對于以高速行駛的車輛情況正好相反。這正是一種所期
nd和id則望的調(diào)速特性。式中的V和α可用速度傳感器和微分電路測得,
可根據(jù)α及V通過圖b確定。
不過,式(4)還不能直接用來確定CVT的調(diào)速方向和調(diào)速率,因為它無法處理f不等于ne不等于nd的情況,而任一不定因數(shù)的影響都可能導致這種情況的發(fā)生。
3.2.2 穩(wěn)態(tài)下有轉(zhuǎn)速偏差是的調(diào)速率
設在某油門開度α和傳動比i下,驅(qū)動功率Pt
=ηtPe(其中ηt
是傳動
系機械小效率,按常數(shù)處理)和阻力功率PZ在某點e達到了穩(wěn)態(tài)平衡,車速V,如下圖所示:
然而,平衡工作點e并為與理想的目標工作點重合,即i不等于id,
ne
不等于nd。顯然此時需要增大傳動比使驅(qū)動功率曲線Pt向左“平移”
到Pw曲線位置上(注:在對數(shù)坐標中才真正意義上的平移,而在自然坐標中,對應不同傳動比的各Pt曲線最大,最小值應盡量一樣,但曲線斜率和覆蓋的速度域?qū)挾葏s有所不同,稱“平移”只是為了形象和方便),從而使d
→d0,e→d,i→id,ne→nd
,達到理想工作狀態(tài)。
現(xiàn)在的問題是,如何確定這種調(diào)節(jié)過程中的適當調(diào)速率?為此做如下合乎情理的假設:1)發(fā)動機轉(zhuǎn)速偏差?n此范圍內(nèi)可以認為使d
=nd-ne
的范圍不大;2)在
→d0和使e→d完全等效。
有上圖可知,要使e→功率增量?P
=Ptd-Pte
d
,應該增大傳動比i來獲得一個附加的驅(qū)動
=ne=cosst
。這相當于在始終保持ne條件下,不
斷減小傳動比,把以d為工作點的Pt曲線向右“平移”到Pn與假象阻力功率Px在d1點平衡這一過程中的逆過程。這個向右“平移”過程的調(diào)速率,類似于式(4)的第二項,表為:
diddt
=-A
nddVVd
2
dt
=-A
ndVd
2
ad
式中ad
=dVd/dt=3600?P/δmVd
是使調(diào)速過程中心保持不變所應產(chǎn)
生的加速度:
δ——轉(zhuǎn)動質(zhì)量轉(zhuǎn)換常數(shù) m——整車質(zhì)量,kg 于是其逆過程的調(diào)速率表為:
didt=-
diddt
=A
ndVD
2
=
3600An
d
δmV/dt
3d
?P
顯然,隨著e→
e
d→d0
,?P,ad及di
都將不斷減少,直到d,d0,
三點重合,此時di
/dt=0
出于事實上在每個瞬時的Pt曲線上都有i
Vd=And/i=Vnd/ne
didt
=Ane/V=And/Vd
,即
,故可從上式中消去Vd,得
=
3600
i
2
32
δmA
2
nd
?P=C
i
32
nd
?P
式中 C ?P
=3600/δmA
d
e
=Pt-Pt=ηt(Pd-pe)
它可根據(jù)已存入微機ROM中類似于圖a的發(fā)動機速度特性Pe
-ne
曲線,
按取樣及計算得到的ne,nd來確定。不過,該?P的定義只適用于Pe
-ne
曲
線單調(diào)上升的那一段。對于工作實際轉(zhuǎn)速ne大于曲線上的最大功率點轉(zhuǎn)速
nmax
的特殊情況,則應先取?P
=ηt(Pe-Pmax
)強行減小傳動比;待工作點回
到Pe單調(diào)上升的主段后,再按前述定義的Pe調(diào)控。
4. 總 結(jié)
總的來說,這次設計是成功的,可以代替原有的變速器,達到了設計的目的。但由于經(jīng)驗,時間等方面的原因,還存在著問題與不足。主要表現(xiàn)在以下幾點:
1) 金屬帶摩擦副的磨損問題
在以前的試驗中,得到鋼對鋼的摩擦副在工作中的耐磨損性能不好,雖然這次設計改選用陶瓷合金材料,理論上滿足了工作要求,但實際情況仍需檢驗。同時由于對摩擦副工作情況的研究還不是很深入,關(guān)于摩擦,磨損的機理了解的不夠,也限制了金屬帶式CVT的設計。隨著我國材料工業(yè)的發(fā)展和對金屬摩擦副的深入研究,選用新型的耐摩擦材料副,設計更加合理的結(jié)構(gòu)參數(shù),這個問題是可以解決的。
2) CVT零件結(jié)構(gòu)尺寸,材料的選擇
由于參考資料的缺陷,我們只能采用機械設計的參考標準(參考《機械設計》)來確定CVT各零件的結(jié)構(gòu)和尺寸。但汽車設計標準與一般機械設計存在著一定的差別,使得我們在這次設計中,選用安全標準偏高,材料不夠優(yōu)良,直接導致CVT結(jié)構(gòu)尺寸偏大,質(zhì)量增重。可以相信,采用汽車設計的標準,可以使這種CVT結(jié)構(gòu)更加的短小緊湊,從而在整車設計,拆卸安裝時,給設計者,修理使用者更大的方便。
5.致謝
本篇論文是在我的導師程文泉老師悉心指導下完成的,他對這篇論文的寫作提出了許多寶貴的意見,并在研究方法上給予了許多指導。程老師研究問題的方法、廣闊的學術(shù)、視野和對研究工作的執(zhí)著態(tài)度讓我在學習和做人方面受益匪淺。因此我要首先感謝我的導師程文泉老師。同時感謝在本論文寫作過程中本文其他不少的老師和同學的關(guān)心及幫助,在這幾年的學習和生活中,班上的同學、授課老師及輔導員老師給了我許多生活和學習上的幫助,并一同度過了許多美好的時光,真心感謝他們!
6.參考文獻
[1] 阮忠唐 機械無級變速器設計與選用指南.北京:化學工業(yè)出版社,1999,9.140~197
[2] 李 偉 圖解汽車自動變速器、無級變速器構(gòu)造與檢修.北京:機械工業(yè)出版社,2011,2.106~168
[3] 王吉會 材料力學性能.天津:天津大學出版社,2006,9.80~130
[4] 張建中 周家澤 機械設計基礎.北京:機械設計基礎,2007,8.169~360
[5] 于慧力 潘承怡 向敬忠 馮新敏編著 機械零部件設計禁忌.北京:機械工業(yè)出版社,2006,10.80~145。
【汽車無級變速器設計】相關(guān)文章:
汽車無級變速器簡介05-02
汽車無級變速器組成原理與檢修04-30
無級變速器PID速比控制器設計04-27
三菱歐蘭德無級變速器特殊故障04-28
汽車變速器全解析04-26
汽車自動變速器檢查維護04-27
汽車自動變速器檢查維護04-27