午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

poj1459 Power Network -電腦資料

電腦資料 時(shí)間:2019-01-01 我要投稿
【www.stanzs.com - 電腦資料】

    Power NetworkTime Limit:2000MSMemory Limit:32768KTotal Submissions:25843Accepted:13488

    Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

   

    An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

    Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

    Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

    Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)207 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5         (0)5 (1)2 (3)2 (4)1 (5)4

    Sample Output

156

    Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

    Source

Southeastern Europe 2003

    最大流模板,

poj1459 Power Network

,

電腦資料

poj1459 Power Network》(http://www.stanzs.com)。

    題目要求多源多匯最大流。方法為添加兩個(gè)點(diǎn),分別為超級(jí)源點(diǎn)S和超級(jí)匯點(diǎn)T,再將所有源點(diǎn)與S連邊,所有匯點(diǎn)與T連邊,求S到T的最大流。

    注意:BFS用到的STL隊(duì)列模板要寫到子函數(shù)里,具體為什么我也不太清楚,寫在外面會(huì)出錯(cuò)。

   

#include<iostream>#include<cstdio>#include#include<cstdlib>#include<cmath>#include<cstring>#include<queue>#define F(i,j,n) for(int i=j;i<=n;i++)#define D(i,j,n) for(int i=j;i>=n;i--)#define LL long long#define pa pair<int,int>#define MAXN 105#define MAXM 30000#define INF 1000000000using namespace std;struct edge_type{	int next,to,v;}e[MAXM];int n,m,np,nc,x,y,z,s,t,ans,cnt,dis[MAXN],head[MAXN],cur[MAXN];inline void add_edge(int x,int y,int v){	e[++cnt]=(edge_type){head[x],y,v};head[x]=cnt;	e[++cnt]=(edge_type){head[y],x,0};head[y]=cnt;}inline bool bfs(){	queue<int>q;	memset(dis,-1,sizeof(dis));	dis[s]=0;q.push(s);	while (!q.empty())	{		int tmp=q.front();q.pop();		if (tmp==t) return true;		for(int i=head[tmp];i;i=e[i].next) if (e[i].v&&dis[e[i].to]==-1)		{			dis[e[i].to]=dis[tmp]+1;			q.push(e[i].to);		}	}	return false;}inline int dfs(int x,int f){	int tmp,sum=0;	if (x==t) return f;	for(int &i=cur[x];i;i=e[i].next)	{		int y=e[i].to;		if (e[i].v&&dis[y]==dis[x]+1)		{			tmp=dfs(y,min(f-sum,e[i].v));			e[i].v-=tmp;e[i^1].v+=tmp;sum+=tmp;			if (sum==f) return sum;		}	}	if (!sum) dis[x]=-1;	return sum;}inline void dinic(){	ans=0;	while (bfs())	{		if (!dis[t]) return;		F(i,1,n+2) cur[i]=head[i];		ans+=dfs(s,INF);	}}int main(){	while (scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)	{		char ch;		s=n+1;t=n+2;cnt=1;		memset(head,0,sizeof(head));		F(i,1,m)		{			ch=getchar();			while (ch!='(') ch=getchar();			scanf("%d,%d)%d",&x,&y,&z);x++;y++;			if (x!=y) add_edge(x,y,z);		}		F(i,1,np) 		{			ch=getchar();			while (ch!='(') ch=getchar();			scanf("%d)%d",&x,&z);x++;			add_edge(s,x,z);		}		F(i,1,nc) 		{			ch=getchar();			while (ch!='(') ch=getchar();			scanf("%d)%d",&x,&z);x++;			add_edge(x,t,z);		}		dinic();		printf("%d\n",ans);	}}</int></int,int></queue></cstring></cmath></cstdlib></cstdio></iostream>

最新文章