- 相關推薦
高中數(shù)學優(yōu)秀教學設計(通用10篇)
作為一名辛苦耕耘的教育工作者,就有可能用到教學設計,教學設計是教育技術的組成部分,它的功能在于運用系統(tǒng)方法設計教學過程,使之成為一種具有操作性的程序。怎樣寫教學設計才更能起到其作用呢?以下是小編為大家收集的高中數(shù)學優(yōu)秀教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數(shù)學優(yōu)秀教學設計 篇1
【教學目的】
(1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
【重點難點】
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教 具:多媒體、實物投影儀
【內容分析】
1.集合是中學數(shù)學的一個重要的基本概念 在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎 例如,下一章講函數(shù)的概念與性質,就離不開集合與邏輯
本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學習全章的引言和集合的基本概念 學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義 本節(jié)課的教學重點是集合的基本概念
集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明
【教學過程】
一、復習引入:
1.簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合 記作N,
(2)正整數(shù)集:非負整數(shù)集內排除0的集 記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合 記作Z ,
(4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,
(5)實數(shù)集:全體實數(shù)的集合 記作R
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負整數(shù)集內排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內排除0的集,也是這樣表示,例如,整數(shù)集內排除0的集,表示成Z*
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的'特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數(shù) (不確定)
(2)好心的人 (不確定)
(3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數(shù),那么 可能取的值組成集合的元素是 -2,0,2
4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( A )
(A)2個元素 (B)3個元素 (C)4個元素 (D)5個元素
5、設集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
(1) 當x∈N時, x∈G;
(2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數(shù),
∴ = 不一定屬于集合G
【小結】
1.集合的有關概念:(集合、元素、屬于、不屬于)
2.集合元素的性質:確定性,互異性,無序性
3.常用數(shù)集的定義及記法
高中數(shù)學優(yōu)秀教學設計 篇2
學習目標
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題.
學習過程
一、學前準備
復習:
1.(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;
(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數(shù)是 ;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;
(4)集合A有個 元素,集合B有 個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是 ;
二、新課導學
探究新知(復習教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
應用示例
例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?
例2.7位同學站成一排,分別求出符合下列要求的不同排法的種數(shù).
(1) 甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的'左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
反饋練習
1. (課本P40A4)某學生邀請10位同學中的6位參加一項活動,其中兩位同學要么都請,要么都不請,共有多少種邀請方法?
2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列
3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有 種.
當堂檢測
1.某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )
A.42 B.30 C.20 D.12
2.(課本P40A7)書架上有4本不同的數(shù)學書,5本不同的物理書,3本不同的化學書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?
課后作業(yè)
1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復數(shù)字的數(shù),問:(1)能夠組成多少個六位奇數(shù)?(2)能夠組成多少個大于201345的正整數(shù)?
2.(課本P41B4)某種產品的加工需要經過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
高中數(shù)學優(yōu)秀教學設計 篇3
1.課題
填寫課題名稱(高中代數(shù)類課題)
2.教學目標
(1)知識與技能:
通過本節(jié)課的學習,掌握......知識,提高學生解決實際問題的能力;
(2)過程與方法:
通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;
(3)情感態(tài)度與價值觀:
通過本節(jié)課的學習,增強學生的學習興趣,將數(shù)學應用到實際生活中,增加學生數(shù)學學習的樂趣。
3.教學重難點
(1)教學重點:本節(jié)課的知識重點
(2)教學難點:易錯點、難以理解的知識點
4.教學方法(一般從中選擇3個就可以了)
(1)討論法
(2)情景教學法
(3)問答法
(4)發(fā)現(xiàn)法
(5)講授法
5.教學過程
(1)導入
簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節(jié)課的課題)
(2)新授課程(一般分為三個小步驟)
①簡單講解本節(jié)課基礎知識點(例:奇函數(shù)的定義)。
、跉w納總結該課題中的重點知識內容,尤其對該注意的一些情況設置易錯點,進行強調?梢栽O計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設置定義域不關于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。
、弁卣寡由,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題。
。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細。)
(3)課堂小結
教師提問,學生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。
6.教學板書
2.高中數(shù)學教案格式
一.課題(說明本課名稱)
二.教學目的(或稱教學要求,或稱教學目標,說明本課所要完成的教學任務)
三.課型(說明屬新授課,還是復習課)
四.課時(說明屬第幾課時)
五.教學重點(說明本課所必須解決的關鍵性問題)
六.教學難點(說明本課的學習時易產生困難和障礙的知識傳授與能力培養(yǎng)點)
七.教學方法要根據(jù)學生實際,注重引導自學,注重啟發(fā)思維
八.教學過程(或稱課堂結構,說明教學進行的內容、方法步驟)
九.作業(yè)處理(說明如何布置書面或口頭作業(yè))
十.板書設計(說明上課時準備寫在黑板上的內容)
十一.教具(或稱教具準備,說明輔助教學手段使用的工具)
十二.教學反思:(教者對該堂課教后的感受及學生的'收獲、改進方法)
3.高中數(shù)學教案范文
【教學目標】
1.知識與技能
(1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務等差數(shù)列的通項公式及其推導過程:
(3)會應用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。
【教學重點】
、俚炔顢(shù)列的概念;
②等差數(shù)列的通項公式
【教學難點】
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;
②等差數(shù)列的通項公式的推導過程.
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數(shù)學學習,大部分學生知識經驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設計思路】
1、教法
、賳l(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發(fā)揮其創(chuàng)造性.
、诜纸M討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調動學生的積極性.
、壑v練結合法:可以及時鞏固所學內容,抓住重點,突破難點.
2、學法
引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.
【教學過程】
一、創(chuàng)設情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學生:
①0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉換成數(shù)學符號語言嗎?
教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義.
(設計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘穑恳豁椗c它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.
(設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用).
2、思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法.
(設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質,激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力)
五、應用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況.
學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六、反饋練習:教材13頁練習1
七、歸納總結:
1、一個定義:
等差數(shù)列的定義及定義表達式
2、一個公式:
等差數(shù)列的通項公式
3、二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充
(設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.
高中數(shù)學優(yōu)秀教學設計 篇4
[學習目標]
。1)會用坐標法及距離公式證明Cα+β;
。2)會用替代法、誘導公式、同角三角函數(shù)關系式,由Cα+β推導Cα—β、Sα±β、Tα±β,切實理解上述公式間的關系與相互轉化;
。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內兩點間的距離公式,把兩角和α+β的`余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數(shù)倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數(shù)是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數(shù)的特例。
4、關于公式的正用、逆用及變用
高中數(shù)學優(yōu)秀教學設計 篇5
一、教學目標:
掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
二、教學重點:
向量的`性質及相關知識的綜合應用。
三、教學過程:
。ㄒ唬┲饕R:
1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
。ǘ├}分析:略
四、小結:
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。
五、作業(yè):
略
高中數(shù)學優(yōu)秀教學設計 篇6
一、教學目標
【知識與技能】
在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的'條件。
【過程與方法】
通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
【情感態(tài)度與價值觀】
滲透數(shù)形結合、化歸與轉化等數(shù)學思想方法,提高學生的整體素質,激勵學生創(chuàng)新,勇于探索。
二、教學重難點
【重點】
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點】
二元二次方程與圓的一般方程及標準圓方程的關系。
三、教學過程
(一)復習舊知,引出課題
1、復習圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數(shù)學優(yōu)秀教學設計 篇7
一、教學目標
【知識與技能】
掌握三角函數(shù)的單調性以及三角函數(shù)值的取值范圍。
【過程與方法】
經歷三角函數(shù)的單調性的探索過程,提升邏輯推理能力。
【情感態(tài)度價值觀】
在猜想計算的過程中,提高學習數(shù)學的興趣。
二、教學重難點
【教學重點】
三角函數(shù)的單調性以及三角函數(shù)值的取值范圍。
【教學難點】
探究三角函數(shù)的.單調性以及三角函數(shù)值的取值范圍過程。
三、教學過程
。ㄒ唬┮胄抡n
提出問題:如何研究三角函數(shù)的單調性
。ㄋ模┬〗Y作業(yè)
提問:今天學習了什么?
引導學生回顧:基本不等式以及推導證明過程。
課后作業(yè):
思考如何用三角函數(shù)單調性比較三角函數(shù)值的大小。
高中數(shù)學優(yōu)秀教學設計 篇8
一、教學目標
知識與技能:
理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學生的推理能力;
2、培養(yǎng)學生應用意識。
二、教學重點、難點:
教學重點:
任意角概念的理解;區(qū)間角的集合的書寫。
教學難點:
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學過程
。ㄒ唬⿲胄抡n
1、回顧角的定義
①角的第一種定義是有公共端點的.兩條射線組成的圖形叫做角。
、诮堑牡诙N定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。
。ǘ┙虒W新課
1、角的有關概念:
、俳堑亩x:
角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。
、诮堑拿Q:
注意:
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱涍^推廣后,已包括正角、負角和零角。
⑤練習:請說出角α、β、γ各是多少度?
2、象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學優(yōu)秀教學設計 篇9
教學目標
。1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題。
。2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。
。3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點。
(4)通過求曲線方程的教學,培養(yǎng)學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法。
。5)進一步理解數(shù)形結合的思想方法。
教學建議
教材分析
。1)知識結構
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質。曲線方程的概念和求曲線方程的問題又有內在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。
(2)重點、難點分析
、俦竟(jié)內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想。
、诒竟(jié)的難點是曲線方程的概念和求曲線方程的方法。
教法建議
。1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系。曲線與方程對應關系的基礎是點與坐標的對應關系。注意強調曲線方程的完備性和純粹性。
。2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備。
。3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。
。4)從集合與對應的觀點可以看得更清楚:
設 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應的點的坐標的集合。
可以用集合相等的概念來定義“曲線的.方程”和“方程的曲線”,即
。5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得。教學中對課本例2的解法分析很重要。
這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數(shù)方程,即
文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程
由此可見,曲線方程就是產生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程!
。6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。
高中數(shù)學優(yōu)秀教學設計 篇10
教學目標:
1.理解流程圖的選擇結構這種基本邏輯結構.
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結構設計流程圖以解決簡單的問題.
教學方法:
1. 通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的`畫法和流程圖的三種基本邏輯結構.
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構數(shù)學
1.選擇結構的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種
操作的結構稱為選擇結構.
如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結構的設計;
(2)選擇結構也稱為分支結構或選取結構,它要先根據(jù)指定的條件進行判斷,再由判斷的結果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結構中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
。4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
【高中數(shù)學優(yōu)秀教學設計】相關文章:
語文祝福優(yōu)秀教學設計01-01
小學數(shù)學《找規(guī)律》優(yōu)秀教學設計(精選24篇)05-31
《位置》的教學設計03-25
登樓賦教學設計02-28
炔烴教學設計04-17
立定跳遠的教學設計03-20
《草》白居易教學設計12-31
《用字母表示數(shù)》優(yōu)秀教學設計與反思(精選10篇)05-08
百數(shù)表優(yōu)質教學設計09-11