午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

海南高考數(shù)學(xué)(理)試題(真題)

時(shí)間:2024-12-18 16:10:12 嘉璇 學(xué)人智庫(kù) 我要投稿
  • 相關(guān)推薦

海南高考數(shù)學(xué)(理)試題(真題)

  在各個(gè)領(lǐng)域,我們很多時(shí)候都不得不用到考試真題,考試真題是參考者回顧所學(xué)知識(shí)和技能的重要參考資料。你所見(jiàn)過(guò)的考試真題是什么樣的呢?下面是小編幫大家整理的海南高考數(shù)學(xué)(理)試題(真題),僅供參考,歡迎大家閱讀。

海南高考數(shù)學(xué)(理)試題(真題)

  海南高考數(shù)學(xué)(理)試題(真題) 1

  2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(新課標(biāo)Ⅱ卷)

  數(shù)學(xué)(理科)   注意事項(xiàng):

  1. 本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。答卷前考生將自己的姓名\準(zhǔn)考證號(hào)填寫(xiě)在本試卷和答題卡相應(yīng)位置。

  2. 回答第Ⅰ卷時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)標(biāo)黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào)。寫(xiě)在本試卷上無(wú)效。

  3. 答第Ⅱ卷時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。

  4. 考試結(jié)束,將試題卷和答題卡一并交回。

  第Ⅰ卷(選擇題 共50分)

  一、 選擇題:本大題共10小題。每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

  (1)已知集合M={x|(x-1)2 < 4,x∈R},N={-1,0,1,2,3},則M∩N=( )

  (A){0,1,2} (B){-1,0,1,2}

  (C){-1,0,2,3} (D){0,1,2,3}

  (2)設(shè)復(fù)數(shù)z滿足(1-i)z=2 i,則z= ( )

  (A)-1+i (B)-1-i (C)1+i (D)1-i

  (3)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3 = a2 +10a1 ,a5 = 9,則a1=( )

  (A) (B) (C) (D) (4)已知m,n為異面直線,m⊥平面α,n⊥平面β。直線l滿足l⊥m,l⊥n, ,則( )

  (A)α∥β且l∥α (B)α⊥β且l⊥β

  (C)α與β相交,且交線垂直于l (D)α與β相交,且交線平行于l

  (5)已知(1+ɑx)(1+x)5的展開(kāi)式中x2的系數(shù)為5,則ɑ=( )

  (A)-4 (B)-3

  (C)-2 (D)-1

  (8)設(shè)a=log36,b=log510,c=log714,則

  (A)c>b>a (B)b>c>a (C)a>c>b (D)a>b>c

  (9)已知a>0,x,y滿足約束條件 ,若z=2x+y的最小值為1,則a=

  (A) (B) (C)1 (D)2

  (10)已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯(cuò)誤的是

  (A) xα∈R,f(xα)=0

  (B)函數(shù)y=f(x)的圖像是中心對(duì)稱圖形

  (C)若xα是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,xα)單調(diào)遞減

  (D)若x0是f(x)的極值點(diǎn),則 (11)設(shè)拋物線y2=3px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上|MF|=5,若以MF為直徑的圓過(guò)點(diǎn)(0,2),則C的方程為

  (A)y2=4x或y2=8x (B)y2=2x或y2=8x

  (C)y2=4x或y2=16x (D)y2=2x或y2=16x

  (12)已知點(diǎn)A(-1,0);B(1,0);C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是

  (A)(0,1)(B) ( C) (D)

  第Ⅱ卷

  本卷包括必考題和選考題,每個(gè)試題考生都必修作答。第22題~第24題為選考題,考生根據(jù)要求作答。

  二、填空題:本大題共4小題,每小題5分。

  (13)已知正方形ABCD的邊長(zhǎng)為2,E為CD的中點(diǎn),則 =_______.

  (14)從n個(gè)正整數(shù)1,2,…,n中任意取出兩個(gè)不同的數(shù),若取出的兩數(shù)之和等于5的概率為 ,則n=________.

  (15)設(shè)θ為第二象限角,若 ,則 =_________.

  (16)等差數(shù)列{an}的前n項(xiàng)和為Sn ,已知S10=0,S15 =25,則nSn 的最小值為_(kāi)_______.

  三.解答題:解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。

  (17)(本小題滿分12分)

  △ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB。

  (Ⅰ)求B;

  (Ⅱ)若b=2,求△ABC面積的最大值。

  (20)(本小題滿分12分)

  平面直角坐標(biāo)系xOy中,過(guò)橢圓M: (a>b>0)右焦點(diǎn)的直線x+y- =0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的.斜率為 (Ι)求M的方程

  (Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值

  (23)(本小題滿分10分)選修4——4;坐標(biāo)系與參數(shù)方程

  已知?jiǎng)狱c(diǎn)P,Q都在曲線C: 上,對(duì)應(yīng)參數(shù)分別為β=α

  與α=2π為(0<α<2π)M為PQ的中點(diǎn)。

  (Ⅰ)求M的軌跡的參數(shù)方程

  (Ⅱ)將M到坐標(biāo)原點(diǎn)的距離d表示為a的函數(shù),并判斷M的軌跡是否過(guò)坐標(biāo)原點(diǎn)。

  (24)(本小題滿分10分)選修4——5;不等式選講

  設(shè)a,b,c均為正數(shù),且a+b+c=1,證明:

  海南高考數(shù)學(xué)(理)試題(真題) 2

  一、選擇題

  1.某年級(jí)有6個(gè)班,分別派3名語(yǔ)文教師任教,每個(gè)教師教2個(gè)班,則不同的任課方法種數(shù)為( )

  A.C26C24C22 B.A26A24A22

  C.C26C24C22C33 D.A26C24C22A33

  [答案] A

  2.從單詞“equation”中取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排法共有( )

  A.120種 B.480種

  C.720種 D.840種

  [答案] B

  [解析] 先選后排,從除qu外的6個(gè)字母中任選3個(gè)字母有C36種排法,再將qu看成一個(gè)整體(相當(dāng)于一個(gè)元素)與選出的3個(gè)字母進(jìn)行全排列有A44種排法,由分步乘法計(jì)數(shù)原理得不同排法共有C36A44=480(種).

  3.從編號(hào)為1、2、3、4的四種不同的種子中選出3種,在3塊不同的土地上試種,每塊土地上試種一種,其中1號(hào)種子必須試種,則不同的試種方法有( )

  A.24種 B.18種

  C.12種 D.96種

  [答案] B

  [解析] 先選后排C23A33=18,故選B.

  4.把0、1、2、3、4、5這六個(gè)數(shù),每次取三個(gè)不同的數(shù)字,把其中最大的數(shù)放在百位上排成三位數(shù),這樣的三位數(shù)有( )

  A.40個(gè) B.120個(gè)

  C.360個(gè) D.720個(gè)

  [答案] A

  [解析] 先選取3個(gè)不同的數(shù)有C36種方法,然后把其中最大的數(shù)放在百位上,另兩個(gè)不同的數(shù)放在十位和個(gè)位上,有A22種排法,故共有C36A22=40個(gè)三位數(shù).

  5.(2010湖南理,7)在某種信息傳輸過(guò)程中,用4個(gè)數(shù)字的一個(gè)排列(數(shù)字允許重復(fù))表示一個(gè)信息,不同排列表示不同信息,若所用數(shù)字只有0和1,則與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同的信息個(gè)數(shù)為( )

  A.10 B.11

  C.12 D.15

  [答案] B

  [解析] 與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同的信息包括三類:

  第一類:與信息0110只有兩個(gè)對(duì)應(yīng)位置上的數(shù)字相同有C24=6(個(gè))

  第二類:與信息0110只有一個(gè)對(duì)應(yīng)位置上的`數(shù)字相同有C14=4(個(gè))

  第三類:與信息0110沒(méi)有一個(gè)對(duì)應(yīng)位置上的數(shù)字相同有C04=1(個(gè))

  與信息0110至多有兩個(gè)對(duì)應(yīng)位置上的`數(shù)字相同的信息有6+4+1=11(個(gè))

  6.北京《財(cái)富》全球論壇開(kāi)幕期間,某高校有14名志愿者參加接待工作.若每天排早,中,晚三班,每班4人,每人每天最多值一班,則開(kāi)幕式當(dāng)天不同的排班種數(shù)為( )

  A.C414C412C48 B.C1214C412C48

  C.C1214C412C48A33 D.C1214C412C48A33

  [答案] B

  [解析] 解法1:由題意知不同的排班種數(shù)為:C414C410C46=14×13×12×114!10×9×8×74!6×52。紺1214C412C48.

  故選B.

  解法2:也可先選出12人再排班為:C1214C412C48C44,即選B.

  7.(2009湖南理5)從10名大學(xué)畢業(yè)生中選3人擔(dān)任村長(zhǎng)助理,則甲、乙至少有1人入選,而丙沒(méi)有入選的不同選法的種數(shù)為( )

  A.85 B.56

  C.49 D.28

  [答案] C

  [解析] 考查有限制條件的組合問(wèn)題.

  (1)從甲、乙兩人中選1人,有2種選法,從除甲、乙、丙外的7人中選2人,有C27種選法,由分步乘法計(jì)數(shù)原理知,共有2C27=42種.

  (2)甲、乙兩人全選,再?gòu)某獾钠溆?人中選1人共7種選法.

  由分類計(jì)數(shù)原理知共有不同選法42+7=49種.

  8.以一個(gè)正三棱柱的頂點(diǎn)為頂點(diǎn)的四面體共有( )

  A.6個(gè) B.12個(gè)

  C.18個(gè) D.30個(gè)

  [答案] B

  [解析] C46-3=12個(gè),故選B.

  9.(2009遼寧理,5)從5名男醫(yī)生、4名女醫(yī)生中選3名醫(yī)生組成一個(gè)醫(yī)療小分隊(duì),要求其中男、女醫(yī)生都有,則不同的組隊(duì)方案共有( )

  A.70種 B.80種

  C.100種 D.140種

  [答案] A

  [解析] 考查排列組合有關(guān)知識(shí).

  解:可分兩類,男醫(yī)生2名,女醫(yī)生1名或男醫(yī)生1名,女醫(yī)生2名,

  ∴共有C25C14+C15C24=70,∴選A.

  10.設(shè)集合Ⅰ={1,2,3,4,5}.選擇Ⅰ的兩個(gè)非空子集A和B,要使B中最小的數(shù)大于A中最大的數(shù),則不同的選擇方法共有( )

  A.50種 B.49種

  C.48種 D.47種

  [答案] B

  [解析] 主要考查集合、排列、組合的基礎(chǔ)知識(shí).考查分類討論的思想方法.

  因?yàn)榧螦中的最大元素小于集合B中的最小元素,A中元素從1、2、3、4中取,B中元素從2、3、4、5中取,由于A、B非空,故至少要有一個(gè)元素.

  1° 當(dāng)A={1}時(shí),選B的方案共有24-1=15種,

  當(dāng)A={2}時(shí),選B的方案共有23-1=7種,

  當(dāng)A={3}時(shí),選B的方案共有22-1=3種,

  當(dāng)A={4}時(shí),選B的方案共有21-1=1種.

  故A是單元素集時(shí),B有15+7+3+1=26種.

  2° A為二元素集時(shí),

  A中最大元素是2,有1種,選B的方案有23-1=7種.

  A中最大元素是3,有C12種,選B的方案有22-1=3種.故共有2×3=6種.

  A中最大元素是4,有C13種.選B的方案有21-1=1種,故共有3×1=3種.

  故A中有兩個(gè)元素時(shí)共有7+6+3=16種.

  3° A為三元素集時(shí),

  A中最大元素是3,有1種,選B的方案有22-1=3種.

  A中最大元素是4,有C23=3種,選B的方案有1種,

  ∴共有3×1=3種.

  ∴A為三元素時(shí)共有3+3=6種.

  4° A為四元素時(shí),只能是A={1、2、3、4},故B只能是{5},只有一種.

  ∴共有26+16+6+1=49種.

  二、填空題

  11.北京市某中學(xué)要把9臺(tái)型號(hào)相同的電腦送給西部地區(qū)的三所希望小學(xué),每所小學(xué)至少得到2臺(tái),共有______種不同送法.

  [答案] 10

  [解析] 每校先各得一臺(tái),再將剩余6臺(tái)分成3份,用插板法解,共有C25=10種.

  12.一排7個(gè)座位分給3人坐,要求任何兩人都不得相鄰,所有不同排法的總數(shù)有________種.

  [答案] 60

  [解析] 對(duì)于任一種坐法,可視4個(gè)空位為0,3個(gè)人為1,2,3則所有不同坐法的種數(shù)可看作4個(gè)0和1,2,3的一種編碼,要求1,2,3不得相鄰故從4個(gè)0形成的5個(gè)空檔中選3個(gè)插入1,2,3即可.

  ∴不同排法有A35=60種.

  13.(09海南寧夏理15)7名志愿者中安排6人在周六、周日兩天參加社區(qū)公益活動(dòng).若每天安排3人,則不同的安排方案共有________種(用數(shù)字作答).

  [答案] 140

  [解析] 本題主要考查排列組合知識(shí).

  由題意知,若每天安排3人,則不同的安排方案有

  C37C34=140種.

  14.2010年上海世博會(huì)期間,將5名志愿者分配到3個(gè)不同國(guó)家的場(chǎng)館參加接待工作,每個(gè)場(chǎng)館至少分配一名志愿者的方案種數(shù)是________種.

  [答案] 150

  [解析] 先分組共有C35+C25C232種,然后進(jìn)行排列,有A33種,所以共有(C35+C25C232)A33=150種方案.

  三、解答題

  15.解方程Cx2+3x+216=C5x+516.

  [解析] 因?yàn)镃x2+3x+216=C5x+516,所以x2+3x+2=5x+5或(x2+3x+2)+(5x+5)=16,即x2-2x-3=0或x2+8x-9=0,所以x=-1或x=3或x=-9或x=1.經(jīng)檢驗(yàn)x=3和x=-9不符合題意,舍去,故原方程的解為x1=-1,x2=1.

  16.在∠MON的邊OM上有5個(gè)異于O點(diǎn)的點(diǎn),邊ON上有4個(gè)異于O點(diǎn)的點(diǎn),以這10個(gè)點(diǎn)(含O點(diǎn))為頂點(diǎn),可以得到多少個(gè)三角形?

  [解析] 解法1:(直接法)分幾種情況考慮:O為頂點(diǎn)的三角形中,必須另外兩個(gè)頂點(diǎn)分別在OM、ON上,所以有C15C14個(gè),O不為頂點(diǎn)的三角形中,兩個(gè)頂點(diǎn)在OM上,一個(gè)頂點(diǎn)在ON上有C25C14個(gè),一個(gè)頂點(diǎn)在OM上,兩個(gè)頂點(diǎn)在ON上有C15C24個(gè).因?yàn)檫@是分類問(wèn)題,所以用分類加法計(jì)數(shù)原理,共有C15C14+C25C14+C15C24=5×4+10×4+5×6=90(個(gè)).

  解法2:(間接法)先不考慮共線點(diǎn)的問(wèn)題,從10個(gè)不同元素中任取三點(diǎn)的組合數(shù)是C310,但其中OM上的6個(gè)點(diǎn)(含O點(diǎn))中任取三點(diǎn)不能得到三角形,ON上的5個(gè)點(diǎn)(含O點(diǎn))中任取3點(diǎn)也不能得到三角形,所以共可以得到C310-C36-C35個(gè),即C310-C36-C35=10×9×81×2×3-6×5×41×2×3-5×41×2=120-20-10=90(個(gè)).

  解法3:也可以這樣考慮,把O點(diǎn)看成是OM邊上的點(diǎn),先從OM上的6個(gè)點(diǎn)(含O點(diǎn))中取2點(diǎn),ON上的4點(diǎn)(不含O點(diǎn))中取一點(diǎn),可得C26C14個(gè)三角形,再?gòu)腛M上的5點(diǎn)(不含O點(diǎn))中取一點(diǎn),從ON上的4點(diǎn)(不含O點(diǎn))中取兩點(diǎn),可得C15C24個(gè)三角形,所以共有C26C14+C15C24=15×4+5×6=90(個(gè)).

  17.某次足球比賽共12支球隊(duì)參加,分三個(gè)階段進(jìn)行.

  (1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊(duì)進(jìn)行單循環(huán)比賽,以積分及凈剩球數(shù)取前兩名;

  (2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主客場(chǎng)交叉淘汰賽(每?jī)申?duì)主客場(chǎng)各賽一場(chǎng))決出勝者;

  (3)決賽:兩個(gè)勝隊(duì)參加決賽一場(chǎng),決出勝負(fù).

  問(wèn)全程賽程共需比賽多少場(chǎng)?

  [解析] (1)小組賽中每組6隊(duì)進(jìn)行單循環(huán)比賽,就是6支球隊(duì)的任兩支球隊(duì)都要比賽一次,所需比賽的場(chǎng)次即為從6個(gè)元素中任取2個(gè)元素的組合數(shù),所以小組賽共要比賽2C26=30(場(chǎng)).

  (2)半決賽中甲組第一名與乙組第二名(或乙組第一名與甲組第二名)主客場(chǎng)各賽一場(chǎng),所需比賽的場(chǎng)次即為從2個(gè)元素中任取2個(gè)元素的排列數(shù),所以半決賽共要比賽2A22=4(場(chǎng)).

  (3)決賽只需比賽1場(chǎng),即可決出勝負(fù).

  所以全部賽程共需比賽30+4+1=35(場(chǎng)).

  18.有9本不同的課外書(shū),分給甲、乙、丙三名同學(xué),求在下列條件下,各有多少種分法?

  (1)甲得4本,乙得3本,丙得2本;

  (2)一人得4本,一人得3本,一人得2本;

  (3)甲、乙、丙各得3本.

  [分析] 由題目可獲取以下主要信息:

 、9本不同的課外書(shū)分給甲、乙丙三名同學(xué);

 、陬}目中的3個(gè)問(wèn)題的條件不同.

  解答本題先判斷是否與順序有關(guān),然后利用相關(guān)的知識(shí)去解答.

  [解析] (1)分三步完成:

  第一步:從9本不同的書(shū)中,任取4本分給甲,有C49種方法;

  第二步:從余下的5本書(shū)中,任取3本給乙,有C35種方法;

  第三步:把剩下的書(shū)給丙有C22種方法,

  ∴共有不同的分法有C49C35C22=1260(種).

  (2)分兩步完成:

  第一步:將4本、3本、2本分成三組有C49C35C22種方法;

  第二步:將分成的三組書(shū)分給甲、乙、丙三個(gè)人,有A33種方法,

  ∴共有C49C35C22A33=7560(種).

  (3)用與(1)相同的方法求解,

  得C39C36C33=1680(種).

  海南高考數(shù)學(xué)(理)試題(真題) 3

  一、選擇題

  1.已知an+1=an-3,則數(shù)列{an}是()

  A.遞增數(shù)列 B.遞減數(shù)列

  C.常數(shù)列 D.擺動(dòng)數(shù)列

  解析:∵an+1-an=-30,由遞減數(shù)列的定義知B選項(xiàng)正確.故選B.

  答案:B

  2.設(shè)an=1n+1+1n+2+1n+3++12n+1(nN*),則()

  A.an+1an B.an+1=an

  C.an+1

  解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12n+3-12n+1=-12n+32n+2.

  ∵nN*,an+1-an0.故選C.

  答案:C

  3.1,0,1,0,的通項(xiàng)公式為()

  A.2n-1 B.1+-1n2

  C.1--1n2 D.n+-1n2

  解析:解法1:代入驗(yàn)證法.

  解法2:各項(xiàng)可變形為1+12,1-12,1+12,1-12,偶數(shù)項(xiàng)為1-12,奇數(shù)項(xiàng)為1+12.故選C.

  答案:C

  4.已知數(shù)列{an}滿足a1=0,an+1=an-33an+1(nN*),則a20等于()

  A.0 B.-3

  C.3 D.32

  解析:由a2=-3,a3=3,a4=0,a5=-3,可知此數(shù)列的最小正周期為3,a20=a36+2=a2=-3,故選B.

  答案:B

  5.已知數(shù)列{an}的通項(xiàng)an=n2n2+1,則0.98()

  A.是這個(gè)數(shù)列的項(xiàng),且n=6

  B.不是這個(gè)數(shù)列的項(xiàng)

  C.是這個(gè)數(shù)列的項(xiàng),且n=7

  D.是這個(gè)數(shù)列的項(xiàng),且n=7

  解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故選C.

  答案:C

  6.若數(shù)列{an}的通項(xiàng)公式為an=7(34)2n-2-3(34)n-1,則數(shù)列{an}的()

  A.最大項(xiàng)為a5,最小項(xiàng)為a6

  B.最大項(xiàng)為a6,最小項(xiàng)為a7

  C.最大項(xiàng)為a1,最小項(xiàng)為a6

  D.最大項(xiàng)為a7,最小項(xiàng)為a6

  解析:令t=(34)n-1,nN+,則t(0,1],且(34)2n-2=[(34)n-1]2=t2.

  從而an=7t2-3t=7(t-314)2-928.

  函數(shù)f(t)=7t2-3t在(0,314]上是減函數(shù),在[314,1]上是增函數(shù),所以a1是最大項(xiàng),故選C.

  答案:C

  7.若數(shù)列{an}的前n項(xiàng)和Sn=32an-3,那么這個(gè)數(shù)列的通項(xiàng)公式為()

  A.an=23n-1 B.an=32n

  C.an=3n+3 D.an=23n

  解析:

 、-②得anan-1=3.

  ∵a1=S1=32a1-3,

  a1=6,an=23n.故選D.

  答案:D

  8.數(shù)列{an}中,an=(-1)n+1(4n-3),其前n項(xiàng)和為Sn,則S22-S11等于()

  A.-85 B.85

  C.-65 D.65

  解析:S22=1-5+9-13+17-21+-85=-44,

  S11=1-5+9-13++33-37+41=21,

  S22-S11=-65.

  或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故選C.

  答案:C

  9.在數(shù)列{an}中,已知a1=1,a2=5,an+2=an+1-an,則a2007等于()

  A.-4 B.-5

  C.4 D.5

  解析:依次算出前幾項(xiàng)為1,5,4,-1,-5,-4,1,5,4,發(fā)現(xiàn)周期為6,則a2007=a3=4.故選C.

  答案:C

  10.數(shù)列{an}中,an=(23)n-1[(23)n-1-1],則下列敘述正確的是()

  A.最大項(xiàng)為a1,最小項(xiàng)為a3

  B.最大項(xiàng)為a1,最小項(xiàng)不存在

  C.最大項(xiàng)不存在,最小項(xiàng)為a3

  D.最大項(xiàng)為a1,最小項(xiàng)為a4

  解析:令t=(23)n-1,則t=1,23,(23)2,且t(0,1]時(shí),an=t(t-1),an=t(t-1)=(t-12)2-14.

  故最大項(xiàng)為a1=0.

  當(dāng)n=3時(shí),t=(23)n-1=49,a3=-2081;

  當(dāng)n=4時(shí),t=(23)n-1=827,a4=-152729;

  又a3

  答案:A

  二、填空題

  11.已知數(shù)列{an}的通項(xiàng)公式an=

  則它的前8項(xiàng)依次為_(kāi)_______.

  解析:將n=1,2,3,8依次代入通項(xiàng)公式求出即可.

  答案:1,3,13,7,15,11,17,15

  12.已知數(shù)列{an}的通項(xiàng)公式為an=-2n2+29n+3,則{an}中的最大項(xiàng)是第________項(xiàng).

  解析:an=-2(n-294)2+8658.當(dāng)n=7時(shí),an最大.

  答案:7

  13.若數(shù)列{an}的前n項(xiàng)和公式為Sn=log3(n+1),則a5等于________.

  解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.

  答案:log365

  14.給出下列公式:

 、賏n=sinn

 、赼n=0,n為偶數(shù),-1n,n為奇數(shù);

  ③an=(-1)n+1.1+-1n+12;

 、躠n=12(-1)n+1[1-(-1)n].

  其中是數(shù)列1,0,-1,0,1,0,-1,0,的.通項(xiàng)公式的有________.(將所有正確公式的序號(hào)全填上)

  解析:用列舉法可得.

  答案:①

  三、解答題

  15.求出數(shù)列1,1,2,2,3,3,的一個(gè)通項(xiàng)公式.

  解析:此數(shù)列化為1+12,2+02,3+12,4+02,5+12,6+02,由分子的規(guī)律知,前項(xiàng)組成正自然數(shù)數(shù)列,后項(xiàng)組成數(shù)列1,0,1,0,1,0,.

  an=n+1--1n22,

  即an=14[2n+1-(-1)n](nN*).

  也可用分段式表示為

  16.已知數(shù)列{an}的通項(xiàng)公式an=(-1)n12n+1,求a3,a10,a2n-1.

  解析:分別用3、10、2n-1去替換通項(xiàng)公式中的n,得

  a3=(-1)3123+1=-17,

  a10=(-1)101210+1=121,

  a2n-1=(-1)2n-1122n-1+1=-14n-1.

  17.在數(shù)列{an}中,已知a1=3,a7=15,且{an}的通項(xiàng)公式是關(guān)于項(xiàng)數(shù)n的一次函數(shù).

  (1)求此數(shù)列的通項(xiàng)公式;

  (2)將此數(shù)列中的偶數(shù)項(xiàng)全部取出并按原來(lái)的先后順序組成一個(gè)新的數(shù)列{bn},求數(shù)列{bn}的通項(xiàng)公式.

  解析:(1)依題意可設(shè)通項(xiàng)公式為an=pn+q,

  得p+q=3,7p+q=15.解得p=2,q=1.

  {an}的通項(xiàng)公式為an=2n+1.

  (2)依題意bn=a2n=2(2n)+1=4n+1,

  {bn}的通項(xiàng)公式為bn=4n+1.

  18.已知an=9nn+110n(nN*),試問(wèn)數(shù)列中有沒(méi)有最大項(xiàng)?如果有,求出最大項(xiàng),如果沒(méi)有,說(shuō)明理由.

  解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9,

  當(dāng)n7時(shí),an+1-an

  當(dāng)n=8時(shí),an+1-an=0;

  當(dāng)n9時(shí),an+1-an0.

  a1

  故數(shù)列{an}存在最大項(xiàng),最大項(xiàng)為a8=a9=99108.

【海南高考數(shù)學(xué)(理)試題(真題)】相關(guān)文章:

福建高考數(shù)學(xué)(理)試題真題及答案(word版)09-02

新課標(biāo)Ⅰ高考數(shù)學(xué)(文)試題真題(word版)06-30

廣西高考數(shù)學(xué)(理)試題及答案09-15

湖南高考英語(yǔ)試題(真題)09-22

上海高考文科數(shù)學(xué)真題07-15

湖北高考理科數(shù)學(xué)真題06-28

深度解析高考北京理綜生物真題10-28

山東高考理綜物理真題(word版)10-04

湖南高考英語(yǔ)試題(真題)(2)07-14