- 相關(guān)推薦
高中數(shù)學(xué)四種命題教學(xué)設(shè)計
導(dǎo)語:理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力。下面是小編給大家整理的高中數(shù)學(xué)四種命題教學(xué)設(shè)計內(nèi)容,希望能給你帶來幫助!
高中數(shù)學(xué)四種命題教學(xué)設(shè)計1
一、教學(xué)目標
1、在初中學(xué)過原命題、逆命題知識的基礎(chǔ)上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力
4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。
二、教學(xué)分析
重點:四種命題;難點:四種命題的關(guān)系
1。本小節(jié)首先從初中數(shù)學(xué)的命題知識,給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識,進一步講解反證法。
2。教學(xué)時,要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
。常叭魀則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。
三、教學(xué)手段和方法(演示教學(xué)法和循序漸進導(dǎo)入法)
1。以故事形式入題
2多媒體演示
四、教學(xué)過程
。ㄒ唬┮耄阂粋生活中有趣的與命題有關(guān)的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的`又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學(xué)思想嗎?通過這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點被緊緊抓住,躍躍欲試!
設(shè)計意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣
。ǘ⿵(fù)習(xí)提問:
1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動:
口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.
設(shè)計意圖: 通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).
。ㄈ┬抡n講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
例1及例2
。ㄎ澹┱n堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動:
討論后回答
這兩個逆否命題都真.
原命題真,逆否命題也真
引導(dǎo)學(xué)生討論原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說明,同學(xué)們踴躍發(fā)言。
。┱n堂小結(jié):
1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結(jié)論)
否命題,若¬p則¬q;(同時否定原命題的條件和結(jié)論)
逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時否定)
2、四種命題的關(guān)系
。1).原命題為真,它的逆命題不一定為真.
。2).原命題為真,它的否命題不一定為真.
(3).原命題為真,它的逆否命題一定為真
(七)回扣引入
分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:
第一句:“該來的沒來”
其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛
五、作業(yè)
1.設(shè)原命題是“若
斷它們的真假. ,則 ”,寫出它的逆命題、否命題與逆否命題,并分別判
2.設(shè)原命題是“當 時,若 ,則 ”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.
高中數(shù)學(xué)四種命題教學(xué)設(shè)計2
教學(xué)目標
(1)理解四種命題的概念;
(2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;
(3)理解一個命題的真假與其他三個命題真假間的關(guān)系;
。4)初步掌握反證法的概念及反證法證題的基本步驟;
。5)通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;
(6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;
(7)培養(yǎng)學(xué)生用反證法簡單推理的技能,從而發(fā)展學(xué)生的思維能力.
教學(xué)重點和難點
重點:四種命題之間的關(guān)系;難點:反證法的運用.
教學(xué)過程設(shè)計
第一課時:四種命題
一、導(dǎo)入新課
【練習(xí)】1.把下列命題改寫成“若p則q”的形式:
。╨)同位角相等,兩直線平行;
。2)正方形的四條邊相等.
2.什么叫互逆命題?上述命題的逆命題是什么?
將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論.
如果第一個命題的條件是第二個命題的結(jié)論,且第一個命題的結(jié)論是第二個命題的條件,那么這兩個命題叫做互道命題.
上述命題的道命題是“若一個四邊形的`四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.
值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動:
口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.
設(shè)計意圖:
通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).
二、新課
【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?
【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題.
【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?
學(xué)生活動:
口答:若一個四邊形不是正方形,則它的四條邊不相等.
教師活動:
【講述】一個命題的條件和結(jié)論分別是另一個命題的條件的否定和結(jié)論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.
若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定.
【板書】原命題:若p則q;
否命題:若┐p則q┐.
【提問】原命題真,否命題一定真嗎?舉例說明?
學(xué)生活動:
講論后回答:
原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.
原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.
由此可以得原命題真,它的否命題不一定真.
設(shè)計意圖:
通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動學(xué)生學(xué)習(xí)的積極性.
教師活動:
【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?
學(xué)生活動:
討論后回答
【總結(jié)】可以將這個命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.
教師活動:
【提問】原命題“正方形的四條邊相等”的逆否命題是什么?
學(xué)生活動:
口答:若一個四邊形的四條邊不相等,則不是正方形.
教師活動:
【講述】一個命題的條件和結(jié)論分別是另一個命題的結(jié)論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.
原命題是“若 p則 q ”,則逆否命題為“若┐q 則┐p .
【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動:
討論后回答
這兩個逆否命題都真.
原命題真,逆否命題也真.
教師活動:
【提問】原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說明?
【總結(jié)】1.原命題為真,它的逆命題不一定為真.
2.原命題為真,它的否命題不一定為真.
3.原命題為真,它的逆否命題一定為真.
設(shè)計意圖:
通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動學(xué)生學(xué)的積極性.
教師活動:
三、課堂練習(xí)
1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫在方框內(nèi)?
學(xué)生活動:筆答
教師活動:
2.根據(jù)上圖所給出的箭頭,寫出箭頭兩頭命題之間的關(guān)系?舉例加以說明?
學(xué)生活動:討論后回答
設(shè)計意圖:
通過學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.
教師活動:
[高中數(shù)學(xué)四種命題教學(xué)設(shè)計]
【高中數(shù)學(xué)四種命題教學(xué)設(shè)計】相關(guān)文章:
半命題作文教學(xué)設(shè)計07-15
高中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計(通用10篇)06-03
高中數(shù)學(xué)教學(xué)總結(jié)范文07-07
高中數(shù)學(xué)教學(xué)反思總結(jié)08-30
高考統(tǒng)一命題:浙江仍自主命題08-27
四種格式的成語06-24
工齡的四種算法07-15
小學(xué)《身邊的設(shè)計》教學(xué)設(shè)計07-19
簡歷的四種致命錯誤08-07