[薦]函數(shù)知識(shí)點(diǎn)15篇
上學(xué)的時(shí)候,是不是聽到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)是傳遞信息的基本單位,知識(shí)點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。還在苦惱沒有知識(shí)點(diǎn)總結(jié)嗎?下面是小編精心整理的函數(shù)知識(shí)點(diǎn),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
函數(shù)知識(shí)點(diǎn)1
一次函數(shù)的解析式
、冱c(diǎn)斜式:y-y1=k(x-x1)(k為直線斜率,(x1,y1)為該直線所過的一個(gè)點(diǎn));
、趦牲c(diǎn)式:(y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直線上(x1,y1)與(x2,y2)兩點(diǎn)),
、劢鼐嗍剑簒/a+y/b=1 (a、b分別為直線在x、y軸上的截距)。
解析式表達(dá)的局限性:
、偎钘l件較多(2個(gè)點(diǎn),因?yàn)槭褂么ㄏ禂?shù)法需要列一個(gè)二元一次方程組);
、鄄荒鼙磉_(dá)沒有斜率的直線(即垂直于x軸的直線;注意沒有斜率的直線平行于y軸表述不準(zhǔn),因?yàn)閤=0與y軸重合);
、懿荒鼙磉_(dá)平行于坐標(biāo)軸的直線和過原點(diǎn)的直線。
x軸的正半軸逆時(shí)針旋轉(zhuǎn)到直線所成的'角(直線與x軸正方向所成的角)稱為直線的傾斜角。設(shè)一直線的傾斜角為,則該直線的斜率k=tan。傾斜角的范圍為(0, )。
只要這樣踏踏實(shí)實(shí)完成每天的計(jì)劃和小目標(biāo),就可以自如地應(yīng)對(duì)新學(xué)習(xí),達(dá)到長遠(yuǎn)目標(biāo)。
函數(shù)知識(shí)點(diǎn)2
1 冪函數(shù)解析式的右端是個(gè)冪的形式。冪的底數(shù)是自變量,指數(shù)是常數(shù),可以為任何實(shí)數(shù);與指數(shù)函數(shù)的形式正好相反。
2 冪函數(shù)的圖像和性質(zhì)比較復(fù)雜,高考只要求掌握指數(shù)為1、2、3、-1、時(shí)冪函數(shù)的圖像和性質(zhì)。
3 了解其它冪函數(shù)的圖像和性質(zhì),主要有:
①當(dāng)自變量為正數(shù)時(shí),冪函數(shù)的.圖像都在第一象限。指數(shù)為負(fù)數(shù)的冪函數(shù)都是過點(diǎn)(1,1)的減函數(shù),以坐標(biāo)軸為漸近線,指數(shù)越小越靠近
x軸。指數(shù)為正數(shù)的冪函數(shù)都是過原點(diǎn)和(1,1)的增函數(shù);在 x=1的右側(cè)指數(shù)越大越遠(yuǎn)離 x 軸。
、趦绾瘮(shù)的定義域可以根據(jù)冪的意義去求出:要么是x≥0,要么是關(guān)于原點(diǎn)對(duì)稱。前者只在第一象限有圖像;后者一定具有奇偶性,利用對(duì)稱性可以畫出二或三象限的圖像。注意第四象限絕對(duì)不會(huì)有圖像。
、鄱x域關(guān)于原點(diǎn)對(duì)稱的冪函數(shù)一定具有奇偶性。當(dāng)指數(shù)是偶數(shù)或分子是偶數(shù)的分?jǐn)?shù)時(shí)是偶函數(shù);否則是奇函數(shù)。
4 冪函數(shù)奇偶性的一般規(guī)律:
、胖笖(shù)是偶數(shù)的冪函數(shù)是偶函數(shù)。
、浦笖(shù)是奇數(shù)的冪函數(shù)是奇函數(shù)。
⑶指數(shù)是分母為偶數(shù)的分?jǐn)?shù)時(shí),定義域 x>0或 x≥0,沒有奇偶性。
⑷指數(shù)是分子為偶數(shù)的分?jǐn)?shù)時(shí),冪函數(shù)是偶函數(shù)。
、芍笖(shù)是分子分母為奇數(shù)的分?jǐn)?shù)時(shí),冪函數(shù)是奇數(shù)函數(shù)。
函數(shù)知識(shí)點(diǎn)3
十七世紀(jì)函數(shù)概念
十七世紀(jì)伽俐略(G.Galileo,意,1564-1642)在《兩門新科學(xué)》一書中,幾乎全部包含函數(shù)或稱為變量關(guān)系的這一概念,用文字和比例的語言表達(dá)函數(shù)的關(guān)系。1637年前后笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已注意到一個(gè)變量對(duì)另一個(gè)變量的依賴關(guān)系,但因當(dāng)時(shí)尚未意識(shí)到要提煉函數(shù)概念,因此直到17世紀(jì)后期牛頓、萊布尼茲建立微積分時(shí)還沒有人明確函數(shù)的一般意義,大部分函數(shù)是被當(dāng)作曲線來研究的。
1673年,萊布尼茲首次使用function(函數(shù))表示冪,后來他用該詞表示曲線上點(diǎn)的橫坐標(biāo)、縱坐標(biāo)、切線長等曲線上點(diǎn)的有關(guān)幾何量。與此同時(shí),牛頓在微積分的討論中,使用流量來表示變量間的關(guān)系。
十八世紀(jì)函數(shù)概念
1718年約翰柏努利(JohannBernoulli,瑞士,1667-1748)在萊布尼茲函數(shù)概念的基礎(chǔ)上對(duì)函數(shù)概念進(jìn)行了定義:由任一變量和常數(shù)的任一形式所構(gòu)成的量。他的意思是凡變量x和常量構(gòu)成的式子都叫做x的函數(shù),并強(qiáng)調(diào)函數(shù)要用公式來表示。1748年,柏努利的學(xué)生歐拉在《無窮分析引論》一書中說:一個(gè)變量的函數(shù)是由該變量的.一些數(shù)或常量與任何一種方式構(gòu)成的解析表達(dá)式。
1755,歐拉(L.Euler,瑞士,1707-1783)把函數(shù)定義為如果某些變量,以某一種方式依賴于另一些變量,即當(dāng)后面這些變量變化時(shí),前面這些變量也隨著變化,我們把前面的變量稱為后面變量的函數(shù)。
18世紀(jì)中葉歐拉(L.Euler,瑞士,1707-1783)給出了定義:一個(gè)變量的函數(shù)是由這個(gè)變量和一些數(shù)即常數(shù)以任何方式組成的解析表達(dá)式。他把約翰貝努利給出的函數(shù)定義稱為解析函數(shù),并進(jìn)一步把它區(qū)分為代數(shù)函數(shù)和超越函數(shù),還考慮了隨意函數(shù)。不難看出,歐拉給出的函數(shù)定義比約翰貝努利的定義更普遍、更具有廣泛意義。
十九世紀(jì)函數(shù)概念
1821年,柯西(Cauchy,法,1789-1857)從定義變量起給出了定義:在某些變數(shù)間存在著一定的關(guān)系,當(dāng)一經(jīng)給定其中某一變數(shù)的值,其他變數(shù)的值可隨著而確定時(shí),則將最初的變數(shù)叫自變量,其他各變數(shù)叫做函數(shù)。在柯西的定義中,首先出現(xiàn)了自變量一詞,同時(shí)指出對(duì)函數(shù)來說不一定要有解析表達(dá)式。不過他仍然認(rèn)為函數(shù)關(guān)系可以用多個(gè)解析式來表示,這是一個(gè)很大的局限。
1822年傅里葉(Fourier,法國,17681830)發(fā)現(xiàn)某些函數(shù)也已用曲線表示,也可以用一個(gè)式子表示,或用多個(gè)式子表示,從而結(jié)束了函數(shù)概念是否以唯一一個(gè)式子表示的爭論,把對(duì)函數(shù)的認(rèn)識(shí)又推進(jìn)了一個(gè)新層次。
1837年狄利克雷(Dirichlet,德國,1805-1859)突破了這一局限,認(rèn)為怎樣去建立x與y之間的關(guān)系無關(guān)緊要,他拓廣了函數(shù)概念,指出:對(duì)于在某區(qū)間上的每一個(gè)確定的x值,y都有一個(gè)確定的值,那么y叫做x的函數(shù)。這個(gè)定義避免了函數(shù)定義中對(duì)依賴關(guān)系的描述,以清晰的方式被所有數(shù)學(xué)家接受。這就是人們常說的經(jīng)典函數(shù)定義。
等到康托(Cantor,德國,1845-1918)創(chuàng)立的集合論在數(shù)學(xué)中占有重要地位之后,維布倫(Veblen,美,1880-1960)用集合和對(duì)應(yīng)的概念給出了近代函數(shù)定義,通過集合概念把函數(shù)的對(duì)應(yīng)關(guān)系、定義域及值域進(jìn)一步具體化了,且打破了變量是數(shù)的極限,變量可以是數(shù),也可以是其它對(duì)象。
現(xiàn)代函數(shù)概念
1914年豪斯道夫(F.Hausdorff)在《集合論綱要》中用不明確的概念序偶來定義函數(shù),其避開了意義不明確的變量、對(duì)應(yīng)概念。庫拉托夫斯基(Kuratowski)于1921年用集合概念來定義序偶使豪斯道夫的定義很嚴(yán)謹(jǐn)了。
1930年新的現(xiàn)代函數(shù)定義為若對(duì)集合M的任意元素x,總有集合N確定的元素y與之對(duì)應(yīng),則稱在集合M上定義一個(gè)函數(shù),記為y=f(x)。元素x稱為自變?cè)貀稱為因變?cè)?/p>
函數(shù)知識(shí)點(diǎn)4
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且*.
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成(0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),,當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的`運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
a1
圖象特征
函數(shù)性質(zhì)
向x、y軸正負(fù)方向無限延伸
函數(shù)的定義域?yàn)镽
圖象關(guān)于原點(diǎn)和y軸不對(duì)稱
非奇非偶函數(shù)
函數(shù)圖象都在x軸上方
函數(shù)的值域?yàn)镽+
函數(shù)圖象都過定點(diǎn)(0,1)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數(shù)
減函數(shù)
在第一象限內(nèi)的圖象縱坐標(biāo)都大于1
在第一象限內(nèi)的圖象縱坐標(biāo)都小于1
在第二象限內(nèi)的圖象縱坐標(biāo)都小于1
在第二象限內(nèi)的圖象縱坐標(biāo)都大于1
圖象上升趨勢(shì)是越來越陡
圖象上升趨勢(shì)是越來越緩
函數(shù)值開始增長較慢,到了某一值后增長速度極快;
函數(shù)值開始減小極快,到了某一值后減小速度較慢;
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);
(3)對(duì)于指數(shù)函數(shù),總有;
(4)當(dāng)時(shí),若,則;
二、對(duì)數(shù)函數(shù)
(一)對(duì)數(shù)
1.對(duì)數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對(duì)數(shù),記作:(底數(shù),真數(shù),對(duì)數(shù)式)
說明:1注意底數(shù)的限制,且;
2;
3注意對(duì)數(shù)的書寫格式.
兩個(gè)重要對(duì)數(shù):
1常用對(duì)數(shù):以10為底的對(duì)數(shù);
2自然對(duì)數(shù):以無理數(shù)為底的對(duì)數(shù)的對(duì)數(shù).
對(duì)數(shù)式與指數(shù)式的互化
對(duì)數(shù)式指數(shù)式
對(duì)數(shù)底數(shù)冪底數(shù)
對(duì)數(shù)指數(shù)
真數(shù)冪
(二)對(duì)數(shù)函數(shù)
1、對(duì)數(shù)函數(shù)的概念:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+).
注意:1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。
如:,都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).
2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且.
2、對(duì)數(shù)函數(shù)的性質(zhì):
a1
圖象特征
函數(shù)性質(zhì)
函數(shù)圖象都在y軸右側(cè)
函數(shù)的定義域?yàn)?0,+)
圖象關(guān)于原點(diǎn)和y軸不對(duì)稱
非奇非偶函數(shù)
向y軸正負(fù)方向無限延伸
函數(shù)的值域?yàn)镽
函數(shù)圖象都過定點(diǎn)(1,0)
自左向右看,
圖象逐漸上升
自左向右看,
圖象逐漸下降
增函數(shù)
減函數(shù)
第一象限的圖象縱坐標(biāo)都大于0
第一象限的圖象縱坐標(biāo)都大于0
第二象限的圖象縱坐標(biāo)都小于0
第二象限的圖象縱坐標(biāo)都小于0
(三)冪函數(shù)
1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過點(diǎn)(1,1);
(2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;
(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.
函數(shù)知識(shí)點(diǎn)5
銳角三角函數(shù)的定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。
正弦等于對(duì)邊比斜邊
余弦等于鄰邊比斜邊
正切等于對(duì)邊比鄰邊
余切等于鄰邊比對(duì)邊
正割等于斜邊比鄰邊
余割等于斜邊比對(duì)邊
正切與余切互為倒數(shù)
它的本質(zhì)是任意角的集合與一個(gè)比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的,其定義域?yàn)檎麄(gè)實(shí)數(shù)域。另一種定義是在直角三角形中,但并不完全,F(xiàn)代數(shù)學(xué)把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴(kuò)展到復(fù)數(shù)系。
由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。
它有六種基本函數(shù)(初等基本表示):
函數(shù)名 正弦 余弦 正切 余切 正割 余割
在平面直角坐標(biāo)系xOy中,從點(diǎn)O引出一條射線OP,設(shè)旋轉(zhuǎn)角為θ,設(shè)OP=r,P點(diǎn)的坐標(biāo)為(x,y)有
正弦函數(shù) sinθ=y/r
余弦函數(shù) cosθ=x/r
正切函數(shù) tanθ=y/x
余切函數(shù) cotθ=x/y
正割函數(shù) secθ=r/x
余割函數(shù) cscθ=r/y
(斜邊為r,對(duì)邊為y,鄰邊為x。)
以及兩個(gè)不常用,已趨于被淘汰的函數(shù):
正矢函數(shù) versinθ =1-cosθ
余矢函數(shù) coversθ =1-sinθ
銳角三角函數(shù)的性質(zhì)
1、銳角三角函數(shù)定義
銳角角A的正弦,余弦和正切都叫做角A的銳角三角函數(shù)
2、互余角的三角函數(shù)間的關(guān)系。
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
3、同角三角函數(shù)間的關(guān)系
平方關(guān)系:sin2α+cos2α=1
倒數(shù)關(guān)系:cotα=(或tanα·cotα=1)
商的關(guān)系:tanα= , cotα=.
(這三個(gè)關(guān)系的證明均可由定義得出)
4、三角函數(shù)值
(1)特殊角三角函數(shù)值
(2)0°~90°的任意角的三角函數(shù)值,查三角函數(shù)表。
(3)銳角三角函數(shù)值的變化情況
(i)銳角三角函數(shù)值都是正值
(ii)當(dāng)角度在0°~90°間變化時(shí),
正弦值隨著角度的'增大(或減小)而增大(或減小)
余弦值隨著角度的增大(或減小)而減小(或增大)
正切值隨著角度的增大(或減小)而增大(或減小)
余切值隨著角度的增大(或減小)而減小(或增大)
(iii)當(dāng)角度在0°≤α≤90°間變化時(shí),
0≤sinα≤1, 1≥cosα≥0,
當(dāng)角度在0°<α<90°間變化時(shí),
tanα>0, cotα>0.
數(shù)學(xué)的學(xué)習(xí)思維方法
1比較法
通過對(duì)比數(shù)學(xué)條件及問題的異同點(diǎn),研究產(chǎn)生異同點(diǎn)的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點(diǎn)必找相異點(diǎn),找相異點(diǎn)必找相同點(diǎn),不可或缺,也就是說,比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實(shí)質(zhì)。
(3)必須在同一種關(guān)系下(同一種標(biāo)準(zhǔn))進(jìn)行比較,這是“比較”的基本條件。
(4)要抓住主要內(nèi)容進(jìn)行比較,盡量少用“窮舉法”進(jìn)行比較,那樣會(huì)使重點(diǎn)不突出。
(5)因?yàn)閿?shù)學(xué)的嚴(yán)密性,決定了比較必須要精細(xì),往往一個(gè)字,一個(gè)符號(hào)就決定了比較結(jié)論的對(duì)或錯(cuò)。
2公式法
運(yùn)用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡便、有效,也是孩子學(xué)習(xí)數(shù)學(xué)必須學(xué)會(huì)和掌握的一種方法。但一定要讓孩子對(duì)公式、定律、規(guī)則、法則有一個(gè)正確而深刻的理解,并能準(zhǔn)確運(yùn)用。
數(shù)學(xué)勾股定理知識(shí)點(diǎn)
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個(gè)三角形是直角三角形。
3.經(jīng)過證明被確認(rèn)正確的命題叫做定理。
我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
函數(shù)知識(shí)點(diǎn)6
三角函數(shù)
正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角
1、任意角負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角
零角:不作任何旋轉(zhuǎn)形成的角
2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.
第二象限角的集合為k36090k360180,k
第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k
終邊在y軸上的角的集合為k18090,k終邊在坐標(biāo)軸上的角的集合為k90,k
第一象限角的集合為k360k36090,k
3、與角終邊相同的角的.集合為k360,k
4、長度等于半徑長的弧所對(duì)的圓心角叫做1弧度.
5、半徑為r的圓的圓心角所對(duì)弧的長為l,則角的弧度數(shù)的絕對(duì)值是
l.r
180
6、弧度制與角度制的換算公式:2360,1,157.3.180
7、若扇形的圓心角為
為弧度制,半徑為r,弧長為l,周長為C,面積為S,則lr,C2rl
數(shù)學(xué)判定與性質(zhì)區(qū)別
1數(shù)學(xué)中的判定
判定多用于數(shù)學(xué)的證明概念,通過事物的本質(zhì)屬性反映出的本質(zhì)性質(zhì),以此作為依據(jù)推知下一步結(jié)論,這個(gè)行為叫做判定。
例如:兩組對(duì)邊分別平行的四邊形,叫做平行四邊形,這個(gè)作為已證明的定理,揭示了本質(zhì),可以說是“永遠(yuǎn)成立”。
以此作為判定依據(jù),這個(gè)依據(jù)叫判定定理,我發(fā)現(xiàn)一個(gè)四邊形的一組對(duì)邊平行且相等,那么可以斷定此四邊形就是平行四邊形,這個(gè)行為叫判定
2數(shù)學(xué)性質(zhì)
數(shù)學(xué)性質(zhì)是數(shù)學(xué)表觀和內(nèi)在所具有的特征,一種事物區(qū)別于其他事物的屬性。如:平行四邊形的性質(zhì):對(duì)邊平行,對(duì)邊相等,對(duì)角線互相平分,中心對(duì)稱圖形。
垂直平分線定理
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
函數(shù)知識(shí)點(diǎn)7
它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x這些函數(shù)的統(tǒng)稱,各自表示其正弦、余弦、正切、余切為x的角。
三角函數(shù)的反函數(shù)不是單值函數(shù),因?yàn)樗⒉粷M足一個(gè)自變量對(duì)應(yīng)一個(gè)函數(shù)值的要求,其圖像與其原函數(shù)關(guān)于函數(shù)y=x對(duì)稱。歐拉提出反三角函數(shù)的概念,并且首先使用了“arc+函數(shù)名”的形式表示反三角函數(shù),而不是。
為限制反三角函數(shù)為單值函數(shù),將反正弦函數(shù)的值y限在-π/2≤y≤π/2,將y作為反正弦函數(shù)的主值,記為y=arcsin x;相應(yīng)地,反余弦函數(shù)y=arccos x的主值限在0≤y≤π;反正切函數(shù)y=arctan x的.主值限在-π/2
反正弦函數(shù)
y=sin x在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1] ,值域[-π/2,π/2]。
反余弦函數(shù)y=cos x在[0,π]上的反函數(shù),叫做反余弦函數(shù)。記作arccosx,表示一個(gè)余弦值為x的角,該角的范圍在[0,π]區(qū)間內(nèi)。定義域[-1,1] , 值域[0,π]。
反正切函數(shù)
y=tan x在(-π/2,π/2)上的反函數(shù),叫做反正切函數(shù)。記作arctanx,表示一個(gè)正切值為x的角,該角的范圍在(-π/2,π/2)區(qū)間內(nèi)。定義域R,值域(-π/2,π/2)。
反余切函數(shù)
y=cot x在(0,π)上的反函數(shù),叫做反余切函數(shù)。記作arccotx,表示一個(gè)余切值為x的角,該角的范圍在(0,π)區(qū)間內(nèi)。定義域R,值域(0,π)。
函數(shù)知識(shí)點(diǎn)8
一.常量、變量:
在一個(gè)變化過程中,數(shù)值發(fā)生變化的量叫做變量;數(shù)值始終不變的量叫做常量。
二、函數(shù)的概念:
函數(shù)的定義:一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù).
三、函數(shù)中自變量取值范圍的求法:
(1)用整式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。
(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實(shí)數(shù)。
(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。
用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負(fù)數(shù)的一切實(shí)數(shù)。
(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。
(5)對(duì)于與實(shí)際問題有關(guān)系的,自變量的取值范圍應(yīng)使實(shí)際問題有意義。
四、函數(shù)圖象的定義:一般的,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.
五、用描點(diǎn)法畫函數(shù)的圖象的一般步驟
1、列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值。)
注意:列表時(shí)自變量由小到大,相差一樣,有時(shí)需對(duì)稱。
2、描點(diǎn):(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn)。
3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點(diǎn)用平滑的曲線連接起來)。
六、函數(shù)有三種表示形式:
(1)列表法(2)圖像法(3)解析式法
七、正比例函數(shù)與一次函數(shù)的概念:
一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。
一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).
當(dāng)b=0時(shí),y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.
八、正比例函數(shù)的圖象與性質(zhì):
(1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過原點(diǎn)的一條直線,我們稱它為直線y=kx。
(2)性質(zhì):當(dāng)k>0時(shí),直線y=kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時(shí),直線y=kx經(jīng)過二,四象限,從左向右下降,即隨著x的增大y反而減小。
單項(xiàng)式的乘法法則:
單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.
單項(xiàng)式與多項(xiàng)式的乘法法則:
單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.
多項(xiàng)式與多項(xiàng)式的乘法法則:
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.
單項(xiàng)式的除法法則:
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.
多項(xiàng)式除以單項(xiàng)式的法則:
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
2、乘法公式:
、倨椒讲罟剑(a+b)(a-b)=a2-b2
文字語言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.
、谕耆椒焦剑(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍.
3、因式分解:
因式分解的定義.
把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.
掌握其定義應(yīng)注意以下幾點(diǎn):
(1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個(gè)因式都不能分解為止.
弄清因式分解與整式乘法的內(nèi)在的關(guān)系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
九、求函數(shù)解析式的方法:
待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個(gè)式子的方法。
1.一次函數(shù)與一元一次方程:從“數(shù)”的.角度看x為何值時(shí)函數(shù)y=ax+b的值為0.
2.求ax+b=0(a,b是常數(shù),a≠0)的解,從“形”的角度看,求直線y=ax+b與x軸交點(diǎn)的橫坐標(biāo)
3.一次函數(shù)與一元一次不等式:
解不等式ax+b>0(a,b是常數(shù),a≠0).從“數(shù)”的角度看,x為何值時(shí)函數(shù)y=ax+b的值大于0.
4.解不等式ax+b>0(a,b是常數(shù),a≠0).從“形”的角度看,求直線y=ax+b在x軸上方的部分(射線)所對(duì)應(yīng)的的橫坐標(biāo)的取值范圍.
十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)
1.勾股定理的內(nèi)容:如果直角三角形的兩直角邊分別是a、b,斜邊為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方。
注:勾——最短的邊、股——較長的直角邊、弦——斜邊。
勾股定理又叫畢達(dá)哥拉斯定理
2.勾股定理的逆定理:
如果三角形中兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。即
3.勾股數(shù):
滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).常用勾股數(shù):3、4、5;5、12、13;7、24、25;8、15、17。
4.勾股定理常常用來算線段長度,對(duì)于初中階段的線段的計(jì)算起到很大的作用
例題精講:
例1:若一個(gè)直角三角形三邊的長分別是三個(gè)連續(xù)的自然數(shù),則這個(gè)三角形的周長為
解析:可知三邊長度為3,4,5,因此周長為12
(變式)一個(gè)直角三角形的三邊為三個(gè)連續(xù)偶數(shù),則它的三邊長分別為
解析:可知三邊長度為6,8,10,則周長為24
例2:已知直角三角形的兩邊長分別為3、4,求第三邊長.
解析:第一種情況:當(dāng)直角邊為3和4時(shí),則斜邊為5
第二種情況:當(dāng)斜邊長度為4時(shí),一條直角邊為3,則另一邊為根號(hào)7
《點(diǎn)評(píng)》此題是一道易錯(cuò)題目,同學(xué)們應(yīng)該認(rèn)真審題!
例3:一個(gè)直角三角形中,兩直角邊長分別為3和4,下列說法正確的是()
A.斜邊長為25
B.三角形周長為25
C.斜邊長為5
D.三角形面積為20
解析:根據(jù)勾股定理,可知斜邊長度為5,選擇C
函數(shù)知識(shí)點(diǎn)9
I、定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II、二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的'互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
IV、拋物線的性質(zhì)
1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x=-b/2a。
對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(-b/2a,(4ac-b^2)/4a)
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
函數(shù)知識(shí)點(diǎn)10
反比例函數(shù)y=k/x的圖象是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限或第二、四象限。
它們關(guān)于原點(diǎn)對(duì)稱、反比例函數(shù)的圖象與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)不與坐標(biāo)軸相交。
畫反比例函數(shù)的圖象時(shí)要注意的`問題:
。1)畫反比例函數(shù)圖象的方法是描點(diǎn)法;
(2)畫反比例函數(shù)圖象要注意自變量的取值范圍是k≠0,因此不能把兩個(gè)分支連接起來。
k≠0
。3)由于在反比例函數(shù)中,x和y的值都不能為0,所以畫出的雙曲線的兩個(gè)分支要分別體現(xiàn)出無限的接近坐標(biāo)軸,但永遠(yuǎn)不能達(dá)到x軸和y軸的變化趨勢(shì)。
反比例函數(shù)的性質(zhì):
y=k/x(k≠0)的變形形式為xy=k(常數(shù))所以:
。1)其圖象的位置是:
當(dāng)k﹥0時(shí),x、y同號(hào),圖象在第一、三象限;
當(dāng)k﹤0時(shí),x、y異號(hào),圖象在第二、四象限。
。2)若點(diǎn)(m,n)在反比例函數(shù)y=k/x(k≠0)的圖象上,則點(diǎn)(—m,—n)也在此圖象上,故反比例函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
。3)當(dāng)k﹥0時(shí),在每個(gè)象限內(nèi),y隨x的增大而減小;
當(dāng)k﹤0時(shí),在每個(gè)象限內(nèi),y隨x的增大而增大;
函數(shù)知識(shí)點(diǎn)11
一.定義
1.全等形:形狀大小相同,能完全重合的兩個(gè)圖形.
2.全等三角形:能夠完全重合的兩個(gè)三角形.
二.重點(diǎn)
1.平移,翻折,旋轉(zhuǎn)前后的圖形全等.
2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,全等三角形的對(duì)應(yīng)角相等.
3.全等三角形的判定:
SSS三邊對(duì)應(yīng)相等的兩個(gè)三角形全等[邊邊邊]
SAS兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等[邊角邊]
ASA兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等[角邊角]
AAS兩個(gè)角和其中一個(gè)角的對(duì)邊開業(yè)相等的兩個(gè)三角形全等[邊角邊]
HL斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)三角形全等[斜邊,直角邊]
4.角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的'距離相等.
5.角平分線的判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上.
函數(shù)知識(shí)點(diǎn)12
目標(biāo)設(shè)計(jì)
1.知識(shí)與技能:通過本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點(diǎn)與最值的關(guān)系,會(huì)用頂點(diǎn)的性質(zhì)求解最值問題。
能力訓(xùn)練要求
1、能夠分析實(shí)際問題中變量之間的二次函數(shù)關(guān)系,并運(yùn)用二次函數(shù)的知識(shí)求出實(shí)際問題的最大(。┲蛋l(fā)展學(xué)生解決問題的能力, 學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。
2、通過觀察圖象,理解頂點(diǎn)的特殊性,會(huì)把實(shí)際問題中的最值轉(zhuǎn)化為二次函數(shù)的最值問題,通過動(dòng)手動(dòng)腦,提高分析解決問題的能力,并體會(huì)一般與特殊的關(guān)系,培養(yǎng)數(shù)形結(jié)合思想,函數(shù)思想。
情感與價(jià)值觀要求
1、在進(jìn)行探索的活動(dòng)過程中發(fā)展學(xué)生的探究意識(shí),逐步養(yǎng)成合作交流的習(xí)慣。
2、培養(yǎng)學(xué)生學(xué)以致用的習(xí)慣,體會(huì)體會(huì)數(shù)學(xué)在生活中廣泛的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、增強(qiáng)自信心。
方法設(shè)計(jì)
由于本節(jié)課是應(yīng)用問題,重在通過學(xué)習(xí)總結(jié)解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學(xué)活動(dòng),解決問題以學(xué)生動(dòng)手動(dòng)腦探究為主,必要時(shí)加以小組合作討論,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。為了提高課堂效率,展示學(xué)生的學(xué)習(xí)效果,適當(dāng)?shù)剌o以電腦多媒體技術(shù)。
導(dǎo)學(xué)提綱
設(shè)計(jì)思路:最值問題又是生活中利用二次函數(shù)知識(shí)解決最常見、最有實(shí)際應(yīng)用價(jià)值的問題之一,它生活背景豐富 ,學(xué)生比較感興趣,對(duì)九年級(jí)學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過兩個(gè)的實(shí)際問題中,還不能熟練地應(yīng)用知識(shí)解決問題,而面積問題學(xué)生易于理解和接受 ,故而在這兒作此調(diào)整,為求解最大利潤等問題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。目的'在于讓學(xué)生通過掌握求面積最大這一類題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的理論和思想方法基礎(chǔ)。
(一)前情回顧:
1.復(fù)習(xí)二次函數(shù)y=ax2+bx+c(a≠0)的圖象、頂點(diǎn)坐標(biāo)、對(duì)稱軸和最值
2.(1)求函數(shù)y=x2+ 2x-3的最值。
(2)求函數(shù)y=x2+2x-3的最值。(0≤x ≤ 3)
3、拋物線在什么位置取最值?
(二)適當(dāng)點(diǎn)撥,自主探究
請(qǐng)你畫一個(gè)周長為40厘米的矩形,算算它的面積是多少?再和同學(xué)比比,發(fā)現(xiàn)了什么?誰的面積最大?
函數(shù)知識(shí)點(diǎn)13
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個(gè)元素的集合
(2)無限集含有無限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能
(1)A是B的一部分,;
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5) 實(shí)
例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:
①任何一個(gè)集合是它本身的子集。AíA
、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
如何養(yǎng)成良好的解題習(xí)慣
要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的.分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。
在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平 dW 時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
數(shù)學(xué)性質(zhì)
數(shù)學(xué)性質(zhì)是數(shù)學(xué)表觀和內(nèi)在所具有的特征,一種事物區(qū)別于其他事物的屬性。如:平行四邊形的性質(zhì):對(duì)邊平行,對(duì)邊相等,對(duì)角線互相平分,中心對(duì)稱圖形。
高等數(shù)學(xué)知識(shí)點(diǎn)
函數(shù)知識(shí)點(diǎn)14
中考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)資料1:同角互余角的三角函數(shù)間的關(guān)系
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
·倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的對(duì)邊比斜邊,
余弦等于角A的鄰邊比斜邊
正切等于對(duì)邊比鄰邊,
余切等于鄰邊比對(duì)邊
互余角的三角函數(shù)間的關(guān)系:
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
中考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)資料2:銳角三角函數(shù)
銳角三角函數(shù)的.定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。
正弦等于對(duì)邊比斜邊
余弦等于鄰邊比斜邊
正切等于對(duì)邊比鄰邊
余切等于鄰邊比對(duì)邊
正割等于斜邊比鄰邊
余割等于斜邊比對(duì)邊
正切與余切互為倒數(shù)
它的本質(zhì)是任意角的集合與一個(gè)比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的,其定義域?yàn)檎麄(gè)實(shí)數(shù)域。另一種定義是在直角三角形中,但并不完全,F(xiàn)代數(shù)學(xué)把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴(kuò)展到復(fù)數(shù)系。
由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。
它有六種基本函數(shù)(初等基本表示):
函數(shù)名正弦余弦正切余切正割余割
在平面直角坐標(biāo)系xOy中,從點(diǎn)O引出一條射線OP,設(shè)旋轉(zhuǎn)角為θ,設(shè)OP=r,P點(diǎn)的坐標(biāo)為(x,y)有
正弦函數(shù)sinθ=y/r
余弦函數(shù)cosθ=x/r
正切函數(shù)tanθ=y/x
余切函數(shù)cotθ=x/y
正割函數(shù)secθ=r/x
余割函數(shù)cscθ=r/y
(斜邊為r,對(duì)邊為y,鄰邊為x。)
以及兩個(gè)不常用,已趨于被淘汰的函數(shù):
正矢函數(shù)versinθ =1-cosθ
余矢函數(shù)coversθ =1-sinθ
函數(shù)知識(shí)點(diǎn)15
(1)高中函數(shù)公式的變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
(2)一次函數(shù):①若兩個(gè)變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的`形式,則稱是的一次函數(shù)。②當(dāng)=0時(shí),稱是的正比例函數(shù)。
(3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)
、侔岩粋(gè)函數(shù)的自變量與對(duì)應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
、谡壤瘮(shù)=的圖象是經(jīng)過原點(diǎn)的一條直線。
、墼谝淮魏瘮(shù)中,當(dāng)0,O,則經(jīng)2、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、4象限;當(dāng)0,0時(shí),則經(jīng)1、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、3象限。
、墚(dāng)0時(shí),的值隨值的增大而增大,當(dāng)0時(shí),的值隨值的增大而減少。
(4)高中函數(shù)的二次函數(shù):
①一般式:
,對(duì)稱軸是頂點(diǎn)是;
②頂點(diǎn)式:,對(duì)稱軸是頂點(diǎn)是;
、劢稽c(diǎn)式:,其中,是拋物線與x軸的交點(diǎn)
【函數(shù)知識(shí)點(diǎn)】相關(guān)文章:
電功率知識(shí)點(diǎn)12-19
語文月考知識(shí)點(diǎn)02-27
文言句式知識(shí)點(diǎn)12-17
初中的英語知識(shí)點(diǎn)12-18
《誡子書》知識(shí)點(diǎn)05-08