- 相關推薦
考研高數部分一元函數微分學考試重點
2014考研高等數學部分一元函數微分學考試重點:掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分。
一元函數微分學考試內容:
導數和微分的概念;導數的幾何意義和物理意義;函數的可導性與連續(xù)性之間的關系;平面曲線的切線和法線;導數和微分的四則運算;基本初等函數的導數;復合函數、反函數、隱函數以及參數方程所確定的函數的微分法;高階導數;一階微分形式的不變性微分中值定理;洛必達(L’Hospital)法則;函數單調性的判別;函數的極值;函數圖形的凹凸性、拐點及漸近線;函數圖形的描繪;函數的最大值與最小值;弧微分;曲率的概念;曲率圓與曲率半徑。
考試重點:
1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續(xù)性之間的關系。
2.掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分。
3.了解高階導數的概念,會求簡單函數的高階導數。
4.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數。
5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理。
6.掌握用洛必達法則求未定式極限的方法。
7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用。
8.會用導數判斷函數圖形的凹凸性(注:在區(qū)間內,設函數具有二階導數。當時,的圖形是凹的;當時,的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形。
9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑。
【考研高數部分一元函數微分學考試重點】相關文章:
考研數學高數 要掌握重點及方法04-28
考研數學高數部分復習注意事項04-30
考研數學高數部分復習注意事項04-27
2016考研數學高數重點與難點復習指南05-01
考研數學:抓基礎有方向 高數重點解析04-28
考研數學高數題型04-29