高中數(shù)學(xué)《圓的方程》教案
作為一位優(yōu)秀的人民教師,常常要根據(jù)教學(xué)需要編寫教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家整理的高中數(shù)學(xué)《圓的方程》教案,希望能夠幫助到大家。
高中數(shù)學(xué)《圓的方程》教案1
一.復(fù)習(xí)引入
提問:
以A(a,b)為圓心,半徑為r的圓的標(biāo)準(zhǔn)方程是什么?
討論并歸納回答。
復(fù)習(xí)鞏固加強(qiáng)記憶。
二.新課講授
1.思考:
我們先來判斷兩個具體的方程是否表示圓?
2.教師提問:
(1).是不是任何一個形如 的方程表示的曲線都是圓?
(2).如果不是那么在什么條件下表示圓?(提示:與圓的標(biāo)準(zhǔn)方程進(jìn)行比較。)
綜上所述,方程
表示的曲線不一定是圓,只有當(dāng) 時,它表示的曲線才是圓, 我們把方程 ( )稱為圓的一般方程
與一般的二元二次方程 比較
我們來看圓的一般方程的特點:(啟發(fā)學(xué)生歸納)
學(xué)生根據(jù)已有的知識,經(jīng)過配方,把方程化成標(biāo)準(zhǔn)形式,然后加以判斷。
1.
2.
(讓學(xué)生相互討論后,由學(xué)生總結(jié))
配方得總結(jié)
當(dāng) 時,此方程表示以(- ,- )為圓 心, 為半徑的圓;
當(dāng) 時,此方程只有實數(shù)解 , ,即只表示一個點(- ,- );
當(dāng) 時,此方程沒有實數(shù)解,因而它不表示任何圖形
①x2和y2的系數(shù)相同,不等于0.
、跊]有xy這樣的二次項
使新知識建立在學(xué)生已有的知識上
設(shè)置問題:提出疑問,誘導(dǎo)學(xué)生主動思考,主動探究,合作交流使學(xué)生在積極的學(xué)習(xí)中解決問題,提高學(xué)生的教學(xué)思維能力,實現(xiàn)素質(zhì)教育的目標(biāo),同時也培養(yǎng)了學(xué)生的情感、態(tài)度與價值觀。
提高學(xué)生分析問題和解決問題的能力。
圓的標(biāo)準(zhǔn)方程
圓的一般方程
方程
圓心
半徑
r
優(yōu)點
幾何特征明顯
突出方程形式上的特點
問題:圓的標(biāo)準(zhǔn)方程與圓的一般方程各有什么特點?
采用類比法加深在研究問題中由簡單到復(fù)雜,由特殊到一般的化歸思想的認(rèn)識。
練習(xí)1.判斷下列方程是否表示圓? 如果是 ,請求出圓的圓心及半徑.
三.例題講解:
例1:求過三點A(0,0),B(1,1),C(4,2)的圓的方程,并求這個圓的半徑長和圓心坐標(biāo)。
分析:已知曲線類型,應(yīng)采用待定系數(shù)法
使用待定系數(shù)法的圓的方程的一般步驟:
1.根據(jù)題意,選擇標(biāo)準(zhǔn)方程或一般方程;
2.根據(jù)條件列出關(guān)于a、b、r或D、E、F的方程組;
3.解出a、b、r或D、E、F,代入標(biāo)準(zhǔn)方程或一般方程。
例2.已知線段 的端點 的坐標(biāo)是 ,端點 在圓 上運動,求線段 中點 的坐標(biāo) 中 滿足的關(guān)系?并說明該關(guān)系表示什么曲線?
練習(xí)2.求圓心在直線 上,并且經(jīng)過原點和點(3,-1)的圓的方程
課堂小結(jié)
(1)任何一個圓的方程都可以寫成 的形式,但是方程 的曲線不一定是圓;當(dāng) 時,方程 稱為圓的一般方程。
(2)圓的一般方程與圓的標(biāo)準(zhǔn)方程可以互相轉(zhuǎn)化;熟練應(yīng)用配方法求出圓心坐標(biāo)和半徑.
(3)用待定系數(shù)法求圓的`方程時需要靈活選用方程形式.
想一想:可否先求圓心和半徑,再得出圓的方程?
(提示學(xué)生結(jié)合圖形,圓的弦的中垂線的交點為圓心 ,圓心到圓上一點的距離為半徑)
加強(qiáng)待定系數(shù)法的應(yīng)用
培養(yǎng)學(xué)生數(shù)形結(jié)合思想,進(jìn)一步加強(qiáng)學(xué)生用代數(shù)方法研究幾何問題的能力,體現(xiàn)了本節(jié)的知識與技能目標(biāo)。
練習(xí):P123:1、2、3
生:練習(xí)
4.1.2 圓的一般方程
課時設(shè)計 課堂實錄
4.1.2 圓的一般方程
1第一學(xué)時 教學(xué)活動 活動1【活動】活動
四.教學(xué)過程
教學(xué)環(huán)節(jié)
教師活動
學(xué)生活動
設(shè)計意圖
復(fù)習(xí)圓的定義及圓的標(biāo)準(zhǔn)方程特征
創(chuàng)設(shè)問題
設(shè)疑
類比
教師引導(dǎo)
高中數(shù)學(xué)《圓的方程》教案2
1.教學(xué)目標(biāo)
(1)知識目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.
(2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;
2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識.
(3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點.難點
(1)教學(xué)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的`標(biāo)準(zhǔn)方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.
3.教學(xué)過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
[引導(dǎo)] 畫圖建系
[學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點,半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。
(二)深入探究(獲得新知)
問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學(xué)生活動] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)m(x,y)是圓上任意一點,根據(jù)定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點間的距離公式,點m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
i.直接應(yīng)用(內(nèi)化新知)
問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過點 ,圓心在點 .
2.根據(jù)圓的方程寫出圓心和半徑
(1) ; (2) .
ii.靈活應(yīng)用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學(xué)生活動]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .
iii.實際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實際問題情境]
(四)反饋訓(xùn)練(形成方法)
問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
高中數(shù)學(xué)《圓的方程》教案3
1、教學(xué)目標(biāo)
(1)知識目標(biāo):
1、在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;
2、會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程;
3、利用圓的方程解決與圓有關(guān)的實際問題。
(2)能力目標(biāo):
1、進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;
2、使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3、增強(qiáng)學(xué)生用數(shù)學(xué)的意識。
(3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
2、教學(xué)重點、難點
(1)教學(xué)重點:圓的標(biāo)準(zhǔn)方程的'求法及其應(yīng)用。
(2)教學(xué)難點:①會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程
②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題。
3、教學(xué)過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?
[引導(dǎo)]:畫圖建系
[學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點,半圓的直徑AB所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2+y2=16(y≥0)
將x=2。7代入,得
即在離隧道中心線2。7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。
(二)深入探究(獲得新知)
問題二:
1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
答:x2+y2=r2
2、如果圓心在,半徑為時又如何呢?
[學(xué)生活動]:探究圓的方程。
[教師預(yù)設(shè)]:方法一:坐標(biāo)法
如圖,設(shè)M(x,y)是圓上任意一點,根據(jù)定義點M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}
由兩點間的'距離公式,點M適合的條件可表示為①
把①式兩邊平方,得(x―a)2+(y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
I.直接應(yīng)用(內(nèi)化新知)
問題三:
1、寫出下列各圓的方程(課本P77練習(xí)1)
(1)圓心在原點,半徑為3;
(2)圓心在,半徑為
(3)經(jīng)過點,圓心在點
2、根據(jù)圓的方程寫出圓心和半徑
II.靈活應(yīng)用(提升能力)
問題四:
1、求以為圓心,并且和直線相切的圓的方程。
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓。
2、求過點,圓心在直線上且與軸相切的圓的方程。
[教師引導(dǎo)]應(yīng)用待定系數(shù)法尋找圓心和半徑。
3、已知圓的方程為,求過圓上一點的切線方程。
[學(xué)生活動]探究方法
[教師預(yù)設(shè)]方法一:待定系數(shù)法(利用幾何關(guān)系求斜率—垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率—聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式)[多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
4、你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是:
III.實際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
[多媒體課件演示創(chuàng)設(shè)實際問題情境]
(四)反饋訓(xùn)練(形成方法)
問題六:
1、求以C(-1,-5)為圓心,并且和y軸相切的圓的方程。
2、已知點A(-4,-5),B(6,-1),求以AB為直徑的圓的方程。
3、求過點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程。
4、求圓x2+y2=13過點P(—2,3)的切線方程。
5、已知圓的方程為,求過點的切線方程。
(五)小結(jié)反思(拓展引申)
1、課堂小結(jié):
(1)知識性小結(jié):
、賵A心為C(a,b),半徑為r的圓的標(biāo)準(zhǔn)方程為:
當(dāng)圓心在原點時,圓的標(biāo)準(zhǔn)方程為:
、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:
(2)方法性小結(jié):
、偾髨A的方程的方法:I。找出圓心和半徑;II。待定系數(shù)法
②求解應(yīng)用問題的一般方法
2、分層作業(yè):(A)鞏固型作業(yè):課本P81—82:(習(xí)題7。6)1、2、4
(B)思維拓展型作業(yè):
試推導(dǎo)過圓上一點的切線方程。
3、激發(fā)新疑:
問題七:
1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2、方程:的曲線是什么圖形?
設(shè)計說明
圓是學(xué)生比較熟悉的曲線。初中平面幾何對圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點就放在了用解析法研究它的方程和圓的標(biāo)準(zhǔn)方程的一些應(yīng)用上。首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實際問題引導(dǎo)學(xué)生探究獲得圓的標(biāo)準(zhǔn)方程,然后,利用圓的標(biāo)準(zhǔn)方程由潛入深的解決問題,并通過最終在實際問題中的應(yīng)用,增強(qiáng)學(xué)生用數(shù)學(xué)的意識。另外,為了培養(yǎng)學(xué)生的理性思維,我分別在引例和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,能力與知識的形成相伴而行,這樣的設(shè)計不但突出了重點,更使難點的突破水到渠成。
本節(jié)課的設(shè)計了五個環(huán)節(jié),以問題為紐帶,以探究活動為載體,使學(xué)生在問題的指引下、我的指導(dǎo)下把探究活動層層展開、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想,應(yīng)用啟發(fā)式的教學(xué)方法把學(xué)生學(xué)習(xí)知識的過程轉(zhuǎn)變?yōu)閷W(xué)生觀察問題、發(fā)現(xiàn)問題、分析問題、解決問題的過程,在解決問題的同時提鍛煉了思維、提高了能力、培養(yǎng)了興趣、增強(qiáng)了信心。
高中數(shù)學(xué)有效的學(xué)習(xí)方法
一、課后及時回憶
如果等到把課堂內(nèi)容遺忘得差不多時才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識必須及時復(fù)習(xí)。
可以一個人單獨回憶,也可以幾個人在一起互相啟發(fā),補(bǔ)充回憶。一般按照教師板書的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結(jié)構(gòu)進(jìn)行,從課題到重點內(nèi)容,再到例題的每部分的細(xì)節(jié),循序漸進(jìn)地進(jìn)行復(fù)習(xí)。在復(fù)習(xí)過程中要不失時機(jī)整理筆記,因為整理筆記也是一種有效的復(fù)習(xí)方法。
二、定期重復(fù)鞏固
即使是復(fù)習(xí)過的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時間的增長而逐步減小,間隔也可以逐漸拉長?梢援(dāng)天鞏固新知識,每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識即時回顧,每單元進(jìn)行知識梳理,每章節(jié)進(jìn)行知識歸納總結(jié),必須把相關(guān)知識串聯(lián)在一起,形成知識網(wǎng)絡(luò),達(dá)到對知識和方法的整體把握。
三、科學(xué)合理安排
復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實驗證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識記的材料適當(dāng)分類,并且與其他的學(xué)習(xí)或娛樂或休息交替進(jìn)行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認(rèn)知水平,以及識記素材的特點,把握重復(fù)次數(shù)與間隔時間,并非間隔時間越長越好,而要適合自己的復(fù)習(xí)規(guī)律。
高中數(shù)學(xué)考試的技巧
總體原則
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關(guān)的知識點都寫出來,要知道數(shù)學(xué)講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學(xué)好)。
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應(yīng)該分配的時間。對于能夠很快做出來的題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應(yīng)該盡量減少時間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標(biāo)點、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
【高中數(shù)學(xué)《圓的方程》教案】相關(guān)文章:
高中數(shù)學(xué)圓的方程教案12-03
《方程》教案01-27
《圓與圓的位置關(guān)系》的教案12-16
《圓》教案03-30
《方程的意義》教案02-18