初中數(shù)學設計教案
作為一名為他人授業(yè)解惑的教育工作者,常常需要準備教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么什么樣的教案才是好的呢?下面是小編收集整理的初中數(shù)學設計教案,希望對大家有所幫助。
初中數(shù)學設計教案1
一、教學目標
。ㄒ唬。及時鞏固所學知識;
。ǘ。培養(yǎng)學生觀察能力,提高他們分析問題和解決問題的能力;
。ㄈ。使學生初步養(yǎng)成正確思考問題的良好習慣。
二、教學重點和難點
一元一次方程解簡單的應用題的方法和步驟。
三、教學過程
主要為習題處理,由淺入深,使學生把所學知識系統(tǒng)化。
主要由學生完成,老師引導。
習題3。1中,1。2。3都是基礎知識題,讓學生到黑板上做幾道有代表意義的題,然后老師對錯的給與糾正,讓學生對基礎知識題的正確把握。
主要針對學生比較難懂的應用題來講解;
習題5,把1400元獎學金按照兩種獎項獎給22名學生,其中一等獎每人200元,二等獎每人50元,獲得一等獎的學生有多少人?
分析:設獲得一等獎的學生有X人,由已知條件得:
X×200+(22—X)×50=1400
本題要讓學生理解這種設未知數(shù)建立方程的思想,設獲得一等獎的學生有X人,那么二等獎的人數(shù)就是22—X。
習題6,種一批樹苗,如果每人種10棵,則剩6棵樹苗未種,如果每人種12棵,則缺少6棵苗,有多少人種數(shù)?
分析:兩種方法種樹苗,等式就是總樹苗相等,設有X人種樹,
那么:10X+6=12X—6
所以找到等式就是列出方程的重要一步。
習題7,一輛汽車已經(jīng)行駛了12000千米,計劃每月再行駛800千米,幾個月后這輛汽車將行駛20800千米?
分析:由已經(jīng)行駛了12000千米,計劃每月再行駛800千米,最后達到20800千米,我們設X個月后達到目標,列出等式
12000+800X=20800
總之,找出他們之間存在的相等關系就是解決問題的關鍵。
通過系統(tǒng)的學習,讓學生的綜合運用能力提高,對拓廣探索中的.題目老師要細心講解,因為學生對這些題的理解有困難。
四、課堂總結
通過大量的練習,及時鞏固所學知識,使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題。
五、作業(yè)布置
習題3。1第7、8題。
初中數(shù)學設計教案2
一、 教學目標
。ㄒ唬J箤W生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
。ǘE囵B(yǎng)學生觀察能力,提高他們分析問題和解決問題的能力;
3。使學生初步養(yǎng)成正確思考問題的良好習慣。
二、教學重點和難點
一元一次方程解簡單的應用題的方法和步驟。
三、教學過程
我們可以直接看出像4x=24,x+1=3這樣簡單方程的解,但是僅僅依靠觀察來解決比較復雜的方程是很困難的 ,因此,我們還要討論怎么樣解方程,方程是含有未知數(shù)的等式,為了討論方程,我們先來看看等式有什么性質(zhì)。
像m+n=n+m,x+2x=3x,3x+!=5y這樣的式子都是等式。
由教科書中天平的圖形,由它可以發(fā)現(xiàn)什么規(guī)律?
我們可發(fā)現(xiàn),如果在平衡的天平兩邊都加(或減)同樣的量,天平還保持平衡。
等式就像平衡的天平,它具有與上面的事實同樣的性質(zhì)。
由此,我們得出等式的性質(zhì)1
等式兩邊加(或減)同一個數(shù)(或式子),結果仍相等。
用字母表示:a=b,那么a±c=b±c
等式的`性質(zhì)2
等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結果仍相等。
用字母表示:
如果a=b,那么ac=bc
如果 a=b,(c≠0),那么 =
通過例題來對等式的性質(zhì)進行鞏固。
例:利用等式的性質(zhì)解下列方程。
。1)x+7=26; (2)—5x=20; (3)— x—5=4
分析:要使方程x+7=26轉(zhuǎn)化為x=a(常數(shù))的形式,要去掉方程左邊的7,因此兩邊要減7,另外兩個方程如何轉(zhuǎn)化為x=a的形式。
解:(1)兩邊減7,得
x+7—7=26—7
于是
x=19
(2)兩邊同時除以—5,得
=
于是
x=—4
(3)兩邊加5,得
—
化簡,得
兩邊同乘—3,得
x=—27
一般地,從方程解出未知數(shù)的值以后,可以帶如原方程檢驗,看這個值能否使方程的兩邊相等。
讓學生檢驗上題是否正確。
。ㄋ模┱n堂練習
利用等式的性質(zhì)解下列方程并檢驗。
。1)x—5=2; (2)0。3x=45; (3)2— x=3; (4)5x+4=0
教師引導學生做,做好師生互動。
四、課后總結
1。本節(jié)課學習了哪些內(nèi)容?
2。利用等式的性質(zhì)解方程方法和步驟是什么?
3。在運用上述方法和步驟時應注意什么?
五、作業(yè)布置;
習題3。1,3,4,5題
初中數(shù)學設計教案3
教學目標:
利用數(shù)形結合的數(shù)學思想分析問題解決問題。
利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學習,解決情境中的數(shù)學問題,初步形成數(shù)學建模能力,解決一些簡單的實際問題。
在探索中體驗數(shù)學來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結合的美,激發(fā)學生學習數(shù)學的興趣,通過合作學習獲得成功,樹立自信心。
教學重點和難點:
運用數(shù)形結合的思想方法進行解二次函數(shù),這是重點也是難點。
教學過程:
(一)引入:
分組復習舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
可引導學生從幾個方面進行討論:
(1)如何畫圖
。2)頂點、圖象與坐標軸的交點
(3)所形成的三角形以及四邊形的面積
。4)對稱軸
從上面的問題導入今天的課題二次函數(shù)中的圖象與性質(zhì)。
。ǘ┬率冢
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數(shù)量關系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE= SABC。
再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。
2、讓同學討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。
。ㄈ┨岣呔毩
根據(jù)我們學校人人皆知的船模特色項目設計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學校船模組的.情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學生在練習中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。
。ㄋ模┳寣W生討論小結(略)
(五)作業(yè)布置
1、在直角坐標平面內(nèi),點O為坐標原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函數(shù)的解析式;
(2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設平移后的圖象與y軸的交點為C,頂點為P,求 POC的面積。
2、如圖,一個二次函數(shù)的圖象與直線y= x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖2。
。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;
。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實際橋長(備用數(shù)據(jù): ,計算結果精確到1米)
初中數(shù)學設計教案4
一、教學目標:
1.理解并掌握矩形的判定方法.
2.使學生能應用矩形定義、判定等知識,解決簡單的證明題和計算題,進一步培養(yǎng)學生的分析能力
二、重點、難點
1.重點:矩形的判定.
2.難點:矩形的判定及性質(zhì)的綜合應用.
三、例題的意圖分析
本節(jié)課的三個例題都是補充題,例1在的一組判斷題是為了讓學生加深理解判定矩形的條件,老師們在教學中還可以適當?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識進行計算;例3是一道矩形的判定題,三個題目從不同的角度出發(fā),來綜合應用矩形定義及判定等知識的.
四、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?
通過討論得到矩形的判定方法.
矩形判定方法1:對角錢相等的平行四邊形是矩形.
矩形判定方法2:有三個角是直角的四邊形是矩形.
(指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)
五、例習題分析
例1(補充)下列各句判定矩形的說法是否正確?為什么?
。1)有一個角是直角的四邊形是矩形; ()
。2)有四個角是直角的四邊形是矩形; ()
。3)四個角都相等的四邊形是矩形; ()
。4)對角線相等的四邊形是矩形; ()
。5)對角線相等且互相垂直的四邊形是矩形; ()
(6)對角線互相平分且相等的四邊形是矩形; ()
(7)對角線相等,且有一個角是直角的四邊形是矩形; ()
。8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;()
。9)兩組對邊分別平行,且對角線相等的四邊形是矩形. ()
指出:
。╨)所給四邊形添加的'條件不滿足三個的肯定不是矩形;
。2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結論.
例2 (補充)已知 ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4 cm,求這個平行四邊形的面積.
分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
AO= AC,BO= BD.
∵ AO=BO,
AC=BD.
ABCD是矩形(對角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
BC= (cm).
例3 (補充) 已知:如圖(1), ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明.
證明:∵ 四邊形ABCD是平行四邊形,
AD∥BC.
DAB+ABC=180.
又 AE平分DAB,BG平分ABC ,
EAB+ABG= 180=90.
AFB=90.
同理可證AED=BGC=CHD=90.
四邊形EFGH是平行四邊形(有三個角是直角的四邊形是矩形).
六、隨堂練習
1.(選擇)下列說法正確的是( ).
。ˋ)有一組對角是直角的四邊形一定是矩形(B)有一組鄰角是直角的四邊形一定是矩形
。–)對角線互相平分的四邊形是矩形 (D)對角互補的平行四邊形是矩形
2.已知:如圖 ,在△ABC中,C=90, CD為中線,延長CD到點E,使得 DE=CD.連結AE,BE,則四邊形ACBE為矩形.
七、課后練習
1.工人師傅做鋁合金窗框分下面三個步驟進行:
、 先截出兩對符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;
⑵ 擺放成如圖②的四邊形,則這時窗框的形狀是 形,根據(jù)的數(shù)學道理是: ;
⑶ 將直角尺靠緊窗框的一個角(如圖③),調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖④),說明窗框合格,這時窗框是 形,根據(jù)的數(shù)學道理是: ;
2.在Rt△ABC中,C=90,AB=2AC,求A、B的度數(shù).
初中數(shù)學設計教案5
一、教學目標
1.了解公式的意義,使學生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學生觀察、分析及概括的能力;
3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
二、教學建議
。ㄒ唬┙虒W重點、難點
重點:通過具體例子了解公式、應用公式。
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
。ǘ┲攸c、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的`面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
(三)知識結構
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
三、教法建議
1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
初中數(shù)學設計教案6
一、教學目的
1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數(shù)學模型的作用。
2.使學生會列一元一次方程解決一些簡單的應用題。
3.會判斷一個數(shù)是不是某個方程的解。
二、重點、難點
1.重點:會列一元一次方程解決一些簡單的應用題。
2.難點:弄清題意,找出“相等關系”。
三、教學過程
。ㄒ唬⿵土曁釂
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設小紅能買到工本筆記本,那么根據(jù)題意,得1.2x=6。
因為1.2×5=6,所以小紅能買到5本筆記本。
(二)新授
問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)
算術法:(328-64)÷44=264÷44=6(輛)。
列方程:設需要租用x輛客車,可得。
解這個方程,就能得到所求的結果。
問:你會解這個方程嗎?試試看?
問題2:在課外活動中,張老師發(fā)現(xiàn)同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)。
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的`數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
四、鞏固練習
教科書習題
五、小結
本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
初中數(shù)學設計教案7
一、教學目標
(一)認知目標:
1.了解二元一次方程組的概念。
2.理解二元一次方程組的解的概念。
3.會用列表嘗試的方法找二元一次方程組的解。
。ǘ┠芰δ繕耍
1.滲透把實際問題抽象成數(shù)學模型的思想。
2.通過嘗試求解,培養(yǎng)學生的探索能力。
。ㄈ┣楦心繕耍
1.培養(yǎng)學生細致,認真的學習習慣。
2.在積極的教學評價中,促進師生的情感交流。
二、教學
1.二元一次方程組及其解的概念。
2.用列表嘗試的方法求出方程組的解。
三、教學過程
(一)創(chuàng)設情景,引入課題:
1.本班共有40人,請問能確定男女各幾人嗎?為什么?
。1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)
。2)這是什么方程?根據(jù)什么?
2.男生比女生多了2人。設男生x人,女生y人,方程如何表示?x,y的值是多少?
3.本班男生比女生多2人且男生共40人,設該班男生x人,女生y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
像這樣,同一個未知數(shù)表示相同的`量,我們就應用大括號把它們連起來組成一個方程組。
4.點明課題:二元一次方程組。
。ǘ┨骄啃轮,練習鞏固:
1.二元一次方程組的概念
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
。2)練習:判斷下列是不是二元一次方程組:
x+y=3,x+y=200,
2x-3=7,3x+4y=3,
y+z=5,x=y+10,
2y+1=5,4x-y2=2。
學生作出判斷并要說明理由。
2.二元一次方程組的解的概念
。1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>
x=1;x=-2;x=;-x=?
y=0;y=2;y=1;y=?
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
。3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
。4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
。ㄈ┖献魈剿,嘗試求解:
現(xiàn)在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數(shù)x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試。
2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
。1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
。ㄋ模┱n堂小結,布置作業(yè):
1.這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)
2.你還有什么問題或想法需要和大家交流?
3.作業(yè)本。
教學設計說明:1.本課設計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數(shù)據(jù),得出結果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數(shù)字時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
初中數(shù)學設計教案8
一、教學目標
。ㄒ唬┲R教學點
1.使學生能利用公式解決簡單的實際問題。
2.使學生理解公式與代數(shù)式的關系。
。ǘ┠芰τ柧汓c
1.利用數(shù)學公式解決實際問題的能力。
2.利用已知的公式推導新公式的能力。
。ㄈ┑掠凉B透點
數(shù)學來源于生產(chǎn)實踐,又反過來服務于生產(chǎn)實踐。
。ㄋ模┟烙凉B透點
數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的.簡潔美。
二、學法引導
1.數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的公式為基礎、突破難點。
2.學生學法:觀察→分析→推導→計算
三、重點、難點、疑點及解決辦法
1.重點:利用舊公式推導出新的圖形的計算公式。
2.難點:同重點。
3.疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差。
四、課時安排
一課時。
五、教具學具準備
投影儀,自制膠片。
六、師生互動活動設計
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式。
初中數(shù)學設計教案9
教學目標:
教學目標:
1、 會畫已知點關于已知直線 的對稱點,會畫已知線段的對稱線段,會畫已知三角形的對稱三角形。
2、 經(jīng)歷探索軸對稱的性質(zhì)的活動過程,積累數(shù)學活動經(jīng)驗,進一步發(fā)展空間觀念和有條理地思考和表達能力。
三、教學重點與難點
教學重點:作已知圖形的軸對稱圖形的一般步驟。
教學難點:怎樣確定已知圖形的關鍵點并根據(jù)這些點作出對稱圖形。
學習過程:
一.學前準備
1、完成課本第10頁的操作,即圖1—6,并將你完成的操作帶到課堂上來。
2、思考:
下列圖形中,哪些是軸對稱圖形,請把它們找出來,畫出它們所有的對稱軸。
3、請你在下圖的方格內(nèi),設計一個軸對稱圖形。
二.自學、合作探究
(一)自學、相信自己(書本)
實踐、操作:
1、思考:如圖1-9, 3點都在方格紙的格點位置上。請你再找一個格點 ,使圖中的4點組成一個軸對稱圖形。
2、如果直線 外有一點 ,那么怎樣畫出點 關于直線 的對稱點 ?
問題一:畫點關于直線 的對稱點 的方法,并說明道理。
問題二:怎樣畫已知線段的對稱線段?怎樣畫已知三角形的對稱三角形?說說你的想法和依據(jù)。
。ǘ┧妓鳌⒔涣鳎〞纠}練習難)
3、分別畫出圖1-10(1)、(2)、(3)中線段 關于直線 對稱的線段 。
4、 分別在圖圖1-10(1)、(2)、(3)的直線 上取一點 ,并畫 關于直線 對稱的 .
。ㄈ⿷、探究(難度大綜合縱橫思考)
例題講解
例題1、如圖所示,要在街道旁修建一個牛奶站,向居民區(qū)A、B提供牛奶,牛奶站應建在什么地方,才能使A、B到它的`距離之和最短?
例題1
例題2
三.學習體會(空)
四.自我測試(書本練習)
1.練習1 下列數(shù)字圖象都是由鏡中看到的,請分別寫出它們所對應的實際數(shù)字,并說明數(shù)字圖象與鏡面的位置關系。
1、如圖1,線段AB與A’B’關于直線l對稱,
、胚B接AA’交直線l于點O,再連接OB、OB’。
、瓢鸭堁刂本l對折,重合的線段有: 。
⑶因為△OAB和△OA’B’關于直線l , 所以△OAB -△OA’B’,直線l垂直平分線段 ,∠ABO=∠ , ∠AO’B=∠ 。
圖 1 圖 2 圖3
2、如圖2,三角形Ⅰ的兩個頂點分別在直線l1和l2,且l1⊥l2,
、女嬋切微蚺c三角形Ⅰ關于l1對稱;
⑵畫三角形Ⅲ與三角形Ⅱ關于l2對稱;
、钱嬋切微襞c三角形Ⅲ關于l1對稱;
⑷所畫的三角形Ⅳ與三角形Ⅰ成軸對稱嗎?
3、如圖3,四邊形ABCD是長方形彈子球臺面,有黑白兩球分別位于E、F兩點位置上,試問怎樣撞擊黑球E,才能使黑球先碰撞臺邊AB反彈后再擊中白球F?
初中數(shù)學設計教案10
教學目標
1.理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程.
教學過程
1.情景導入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.
2.新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的.整數(shù))的值,女同學馬上給出對應的x的值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?
4.課堂練習:
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_
5.課堂總結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
作業(yè)布置
本章的課后的方程式鞏固提高練習。
初中數(shù)學設計教案11
一.學生情況分析
學生已經(jīng)學習了平行四邊形的性質(zhì)和判定,也學習了一種特殊的平行四邊形菱形的性質(zhì)和判定,對于類似的問題有一定的學習精力、經(jīng)驗和感受,這將更有利于學生對本節(jié)課的學習。
二.教學任務分析
教學目標:
知識目標:
1.掌握正方形的定義,弄清正方形與平行四邊形、菱形、矩形的關系。
2.掌握正方形的性質(zhì)定理1和性質(zhì)定理2。
3.正確運用正方形的性質(zhì)解題。
能力目標:
1.通過四邊形的從屬關系滲透集合思想。
2.在直觀操作活動和簡單的說理過程中,發(fā)展學生初步的合情推理能力、主動探究習慣,逐步掌握說理的基本方法。
情感與價值觀
1.通過理解四種四邊形內(nèi)在聯(lián)系,培養(yǎng)學生辯證觀點
教學重點:正方形的性質(zhì)的應用.
教學難點:正方形的性質(zhì)的應用.
三、教學過程設計
課前準備
教具準備: 一個活動的平行四邊形木框、白紙、剪刀.
學生用具:白紙、剪刀
教學過程設計分成四分環(huán)節(jié):
第一環(huán)節(jié):巧設情境問題,引入課題
第二環(huán)節(jié):講授新課
第三環(huán)節(jié):新課小結
第四環(huán)節(jié):布置作業(yè)
第一環(huán)節(jié) 巧設情境問題,引入課題
進入正題,提出本節(jié)課的研究主題正方形
第二環(huán)節(jié) 講授新課
主要環(huán)節(jié)
。1)呈現(xiàn)兩種通過不同途徑得到正方形的過程,給正方形下定義
。2)討論正方形的性質(zhì)
。3)通過練習加強對正方形性質(zhì)的理解
。4)尋找平行四邊形、矩形、菱形、正方形之間的相互關系。
(5)尋找正方形的判定方法
目的:
1. 正方形是特殊的平行四邊形,也是特殊的矩形和菱形,因此想得到一個正方形,可以在矩形的基礎上強化邊的條件得到,也可以在菱形的基礎上強化角的條件得到。于是在課上呈現(xiàn)這兩種變化,為后面尋求平行四邊形、矩形、菱形、正方形的關系打下基礎。
2. 由于采用了兩種正方形形成的方式,因此正方形的性質(zhì)和判定方法都可以從中挖掘和發(fā)現(xiàn)。
大致教學過程
呈現(xiàn)一個平行四邊形變成正方形的'全過程.(演示)
由于平行四邊形具有不穩(wěn)定性,所以先把平行四邊形木框的一個角變?yōu)橹苯,再移動一條短邊,截成有一組鄰邊相等,此時平行四邊形變成了一個正方形.
這個變化過程,可用如下圖表示
由此可知:正方形是一組鄰邊相等的矩形.即:一組鄰邊相等的矩形叫做正方形.
這個平行四邊形木框還可以這樣變化:先移動一條短邊,截成有一組鄰邊相等的平行四邊形,再把一個角變成直角,此時的平行四邊形也變成了正方形.
這個變化過程,也可用圖表示
你能根據(jù)上面的變化過程,給正方形下定義嗎?
一組鄰邊相等的平行四邊形是菱形.正方形是一個角為直角的菱形,所以可以說:有一個角是直角的菱形叫做正方形.
由此可知:正方形是特殊的矩形,即是鄰邊相等的矩形,也是特殊的菱形,即是有一個角是直角的菱形.
因為正方形是平行四邊形、菱形、矩形,所以它的性質(zhì)是它們的綜合,不僅有平行四邊形的所有性質(zhì),也有矩形和菱形的特殊性質(zhì),即:正方形具有平行四邊形、菱形、矩形的一切性質(zhì).
正方形的性質(zhì):
邊:對邊平行、四邊相等
角:四個角都是直角
對角線:對角線相等,互相垂直平分,每條對角線平分一組對角.
正方形是軸對稱圖形嗎?如是,它有幾條對稱軸?
正方形是軸對稱圖形,它有四條對稱軸,即:兩條對角線,兩組對邊的中垂線.
例題
。劾1]如圖,四邊形ABCD是正方形,兩條對角線相交于點O,求AOB,OAB的度數(shù).
分析:本題是正方形的性質(zhì)的直接應用.正方形的性質(zhì)很多,要恰當運用,本題主要用到正方形的對角線的性質(zhì),即正方形的軸對稱性.
解:正方形ABCD是菱形,對角線AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且對角線AC平分BAD,因此:OAB=45
拿出準備好的剪刀、白紙來做一做
將一張長方形紙對折兩次,然后剪下一個角,打開,怎樣剪才能剪出一個正方形?(學生動手折疊,想,剪切)
只要保證剪口線與折痕成45角即可.因為正方形的兩條對角線把它分成四個全等的等腰直角三角形,把折痕作對角線,這時只需剪一個等腰直角三角形,打開即是正方形.
正方形是平行四邊形、矩形、又是菱形,那么它們四者之間有何關系呢?
正方形、矩形、菱形及平行四邊形四者之間有什么關系呢?
它們的包含關系如圖:
此圖給出了正方形的判別條件,即怎樣判定一個平行四邊形是正方形?
先判定一個四邊形是平行四邊形,再判定這個平行四邊形是矩形,然后再判定這個矩形是菱形;或者先判定一個四邊形是菱形,再判定這個菱形是矩形.
由于判定平行四邊形、矩形、菱形的方法各異,所給出的條件不一樣,所以判定一個四邊形是不是正方形的具體條件相應可作變化,在應用時要仔細辨別后才可以作出判斷.
第三環(huán)節(jié) 課堂練習
教材 隨堂練習1,2
第四環(huán)節(jié) 課時小結
正方形的定義:一組鄰邊相等的矩形.
正方形的性質(zhì)與平行四邊形、矩形、菱形的性質(zhì)可比較如下:(出示小黑板)
第五環(huán)節(jié) 課后作業(yè)
課本習題4.7 1,2,3.
四.教學設計反思
在教材中,并沒有明確的給出正方形的判定定理。那么教師在課堂上應該幫助學生理清思路,使他們明確判定的方法。
為了實現(xiàn)這個目標,在本節(jié)課的開始,教師就采取了兩種方式呈現(xiàn)正方形的形成過程,在直觀上幫助學生認識了正方形與矩形、正方形與菱形之間的關系;在講解正方形性質(zhì)的過程中又再次強化了這種認識。通過層層鋪墊,讓學生明確矩形+鄰邊相等就是正方形,菱形+一個直角就是正方形,如何判定圖形是矩形或是菱形,前面已經(jīng)學習過,因此關于正方形的判定是需要一個條件一個條件“疊加”完成的。
初中數(shù)學設計教案12
隨著科學技術的發(fā)展,教育資源和教育需求也隨之增長和變化。我校進行了初中數(shù)學分層教學課題研究,而分層次備課是搞好分層教學的關鍵,教師應在吃透教材、大綱的情況下,按照不同層次學生的實際情況,設計好分層次教學的全過程。本文將結合本人的教學經(jīng)驗,對分層教學教案設計進行初步探討。
1教學目標的制定
制定具體可行的教學目標,先要分清哪些屬于共同目標,哪些屬于層次目標。并在知識與技能、過程與方法、情感態(tài)度與價值觀三個方面對不同層次的學生制定具體的要求。
2教法學法的制定
制定教法學法應結合各層次學生的具體情況而定,如對A層學生少講多練,注重培養(yǎng)其自學能力;對B層學生,則實行精講精練,注重課本上的例題和習題的處理;對C層學生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎知識和基本技能。
3教學重難點的制定
教學重難點的制定也應結合各層次學生的具體情況而定。
4教學過程的設計
4.1情境導向,分層定標。教師以實例演示、設問等多種方法導入新課。要利用各種教學資料創(chuàng)設恰當?shù)膶W習情境為各層學生呈現(xiàn)適合于本層學生水平學習的內(nèi)容。
4.2分層練習,探討生疑。學生對照各自的目標分層自學。教師要鼓勵學生主動實踐,自覺地去發(fā)現(xiàn)問題、探討問題、解決問題。
4.3集體回授,異步釋疑。“集體回授”主要是針對人數(shù)占優(yōu)勢的B層學生,為解決具有共性的`問題而組織的一種集體教學活動。教師為那些來不及解決的、不具有共性的問題分先后在層內(nèi)釋疑即“異步釋疑”。
5練習與作業(yè)的設計
教師在設計練習或布置作業(yè)時要遵循“兩部三層”的原則。“兩部”是指練習或作業(yè)分為必做題和選做題兩部分;“三層”是指教師在處理練習時要具有三個層次:第一層次為知識的直接運用和基礎練習;第二、三兩層次的題目為選做題,這樣可使A層學生有練習的機會,B、C兩層學生也有充分發(fā)展的余地。
分層教學下教師不能再“拿一個教案用到底”,而要精心地設計課堂教學活動,針對不同層次的學生選擇恰當?shù)姆椒ê褪侄,了解學生的實際需求,關心他們的進步,改革課堂教學模式,充分調(diào)動學生的學習主動性,創(chuàng)造良好的課堂教學氛圍,形成成功的激勵機制,確保每一個學生都有所進步。
初中數(shù)學設計教案13
一、學生起點分析
通過第一節(jié)的學習,學生已對平移的基本性質(zhì)有了的認識,能否利用平移的基本性質(zhì)來學習有關畫圖的操作技能,能否探索圖形之間的平移關系成了本節(jié)課學習的重要任務。
二、教學任務分析
本節(jié)課的主要內(nèi)容是通過實例,讓學生經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,掌握有關畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識。
教學目標
知識目標:
1.簡單平面圖形平移后的圖形的作法.
2.確定一個圖形平移的位置的條件.
能力訓練:
1.對具有平移特征的圖形進行觀察、分析、畫圖和動手操作等過程,掌握畫圖技能.
2.能夠按要求作出簡單平面圖形平移后的圖形.
情感與價值觀:
1.通過畫圖,進一步培養(yǎng)學生的動手操作能力.
2.對具有平移特征的圖形進行觀察、分析、畫圖過程中,進一步發(fā)展學生的審美觀念.
教學重點:簡單平面圖形平移后的圖形的作法.
教學難點:簡單平面圖形平移后的圖形的作法.
三、教學過程設計
第一環(huán)節(jié) 復習回顧平移的基本性質(zhì),引入課題
如圖,將線段AB平移,得到線段AB,則圖中的線段有怎樣的位置關系?有哪些相等的線段?
通過對上節(jié)課內(nèi)容的'回顧,幫助學生復習平移的基本性質(zhì):經(jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等。(AA∥BB且AA=BB, A B∥AB且AB =AB)
如果給出了線段AB,也給出了平移方向和平移距離,你能作出選段AB經(jīng)平移后的對應選段AB嗎?
這節(jié)課我們就來研究:簡單的平移作圖.
第二環(huán)節(jié) 觀察操作、探索歸納平移的作法
、乓阎段AB和平移距離及方向,求作AB的對應線段AB。
讓學生觀察、動手畫圖。
得出已知平移距離和方向的作圖:過A作平移方向的平行線,在平行線上沿平移方向上截取線段,使其長度等于平移距離,即得點A的對稱點A。點B的對應點B的做法同上。
。2)已知線段AB和平移后點A的對應點A ,求作AB的對應線段AB[來源:中.考.資.源.網(wǎng)]
和上面的(1)相比,這里的新問題,不知道平移距離和平移方向,而只知道某點的對應點,該怎么辦?鼓勵學生思考、交流、動手畫圖。
連接A,A,得到線段AA,則AA的長度就是平移距離,有A到A的方向就是平移方向。于是問題轉(zhuǎn)化為前面已經(jīng)解決的問題了。
在這兩個問題的畫圖中,若有學生有不同的畫法,應鼓勵學生交流、討論。這時,可以思考:“畫出選段AB的方法只有(1)中的方法嗎?還有沒有其他的畫法”。若學生在處理簡單的線段問題時,畫法比較單一,這個討論可以放在(3)之后。
。3)將(2)中的圖形略微復雜化一些。已知平面圖形以及該圖形上的某一點經(jīng)平移后的對應點,求作平移后的平面圖形。
例題1 經(jīng)過平移,△ABC的頂點A移到了點D,作出平移后的三角形。
留給學生完成。在學生完成平移的作圖后,根據(jù)前面的若干個作圖問題,增加“議一議”內(nèi)容。
①還有什么其他方法,作出△DEF嗎?
、诖_定一個圖形平移后的位置,除需知道原來圖形的位置外,還需要什么條件?
對于①,教師要幫助學生整理平移作圖的常用方法以及這些作法所依據(jù)的原理。
方法一:過點B、點C,分別作線段BE,CF,使得它們與線段AD平行且相等,連接DE,DF,EF,△DEF就是△ABC平移后的圖形。
方法二:過點D分別作出與AB,AC平行且相等的線段DE,DF,連接EF,△DEF就是△ABC平移后的圖形。
方法三:因為平移后的圖形與原圖形是全等,所以過點B作線段BE,使得它與線段AD平行且相等,得到另一個對應點E(或者過點D作與AB平行且相等的線段DE,得到另一個對應點E)后,按原方向作△ABC的全等△DEF。
對于②,確定一個圖形平移后的位置的全部條件為:
(1)圖形原來的位置 (2)平移方向 (3)平移距離.
這三個條件缺一不可.只有這三個條件都具備,我們才能準確地找到一個圖形平移后的位置,進而作出它平移后的圖形.
第三環(huán)節(jié) 課堂練習
1.如圖,將字母A按箭頭所指的方向平移3cm,作出平移后的圖形。
解:在字母A上,找出關鍵的5個點(如圖),分別過這5個點按箭頭方向作5條長3cm的線段,將所作線段的另5個端點按原來的方式連接,即可得到字母A平移后的圖形。
2.
將圖中的字母N沿水平方向向右平移3cm,作出平移后的圖形。
3.圖中的窗欞輪廓是由一個半圓和一個矩形組成,試作出這個圖案向左平移10格后的圖案。
解:分別確定矩形的四個頂點和半圓的圓心,向左平移10格后的位置,畫半圓(以“圓心”平移后的位置為圓心,以6格的邊長為直徑),連線即可。
第四環(huán)節(jié) 課時小結
本節(jié)課我們通過作平面圖形平移的圖形,進一步理解了平移的性質(zhì),并且還知道要確定一個圖形平移后的位置,需要有:①此圖形原來的位置.②平移方向.③平移距離等三個條件.
在作圖時,要注意語言的表達
第五環(huán)節(jié) 課后作業(yè)
1.必做習題:習題3.2 2,3,4
2.選做習題
。1)如圖,正方形ABCD邊長為4,沿對角線所在直線l將該正方形向右平移到EFGH的位置,已知△ODH的面積為92,求平移的距離.
(2)如圖,在△ABC中,D,E是BC上的點,且BD=CE,求證:AB+ACAD+AE.
四、教學設計反思
在教學過程的設計上,通過對上節(jié)課學習的平移的基本性質(zhì)的復習,為新知的探索作好鋪墊,進而引出新課課題簡單的平移作圖。在例題的選擇和設計上,循序漸進,前一題往往是后一題的基礎,后一題通過化歸都可轉(zhuǎn)化為前一題的問題,在課堂教學中努力滲透數(shù)學中重要的思想方法化歸。
在練習的設計上,遵循由淺入深的原則,循序漸進地讓學生逐步熟練應用平移的特征、平移作圖的方法,從而體現(xiàn)數(shù)學的價值;同時,設計了不同難度的習題,提供給不同層次的學生,滿足不同層次學生的需要,讓“不同的人在數(shù)學上得到不同的發(fā)展”。
初中數(shù)學設計教案14
教學目標
1、使學生能把簡單的與數(shù)量有關的詞語用代數(shù)式表示出來;
2、初步培養(yǎng)學生觀察、分析和抽象思維的能力
教學重點和難點
重點:把實際問題中的數(shù)量關系列成代數(shù)式?
難點:正確理解題意,從中找出數(shù)量關系里的運算順序并能準確地寫成代數(shù)式???
教學手段
現(xiàn)代課堂教學手段
教學方法
啟發(fā)式教學
教學過程
(一)、從學生原有的認知結構提出問題
1、用代數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;(-7)
(4)乙數(shù)比x大16%?((1+16%)x)
(應用引導的方法啟發(fā)學生解答本題)
2、在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關系式,列成代數(shù)式,正如上面的練習中的問題一樣,這一點同學們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學習這個問題?
(二)、講授新課
例1用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%?
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設出來,才能解決欲求的乙數(shù)?
解:設甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本題應由學生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x?
例2用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的與乙數(shù)的的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?
分析:本題應首先把甲乙兩數(shù)具體設出來,然后依條件寫出代數(shù)式?
解:設甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本題應由學生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序?
例3用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)?
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n;(2)5m+2?
(這個例子直接為以后讓學生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)?
例4設字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的;
(3)這個數(shù)的`5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的的和?
分析:啟發(fā)學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通過本例的講解,應使學生逐步掌握把較復雜的數(shù)量關系分解為幾個基本的數(shù)量關系,培養(yǎng)學生分析問題和解決問題的能力?)
例5設教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個;(2)(m)m個?
(三)、課堂練習
1?設甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?
2?用代數(shù)式表示:
(1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)?
3?用代數(shù)式表示:
(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、師生共同小結
首先,請學生回答:
1?怎樣列代數(shù)式?2?列代數(shù)式的關鍵是什么?
其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數(shù)量關系,應按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關系為準(代數(shù)式的形式不唯一);
(2)要善于把較復雜的數(shù)量關系,分解成幾個基本的數(shù)量關系;
(3)把用日常生活語言敘述的數(shù)量關系,列成代數(shù)式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握
練習設計
1、用代數(shù)式表示:
(1)體校里男生人數(shù)占學生總數(shù)的60%,女生人數(shù)是a,學生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學生人數(shù)之比是1∶10,教練人數(shù)是多?
2、已知一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積?
板書設計
§3.2代數(shù)式
(一)知識回顧(三)例題解析(五)課堂小結
例1、例2
(二)觀察發(fā)現(xiàn)(四)課堂練習練習設計
教學后記
由于列代數(shù)式的內(nèi)容既是本章的重點,又是本書的重點,同時也是學生學習過程中的一個難點,故在設計其教學過程時,注意所選例題及練習題由易到難,循序漸進,使學生逐步地掌握好這一內(nèi)容,為今后的學習打下一個良好的基礎?同時,也使學生的抽象思維能力得到初的培養(yǎng)。
初中數(shù)學設計教案15
教學內(nèi)容
24。2圓的切線(1)
教學目標 使學生掌握切線的識別方法,并能初步運用它解決有關問題
通過切線識別方法的學習,培養(yǎng)學生觀察、分析、歸納問題的能力
教學重點 切線的識別方法
教學難點 方法的理解及實際運用
教具準備 投影儀,膠片
教學過程 教師活動 學生活動
。ㄒ唬⿵土 情境導入
1、復習、回顧直線與圓的三 種位置關系。
2、請學生判斷直線和圓的位置關系。
學生判斷的過程,提問:你是怎樣判斷出圖中的直線和圓相切的?根據(jù)學生的回答,繼續(xù)提出 問題:如何界定直線與圓是否只有一個公共點?教師指出,根據(jù)切線的定義可以識別一條直線是不是圓的切線,但有時使用定義識別很不方便,為此我們還要學習識別切 線的其它方法。(板書課題) 搶答
學生總結判別方法
。ǘ
實踐與探索1:圓的切線的判斷方法 1、由上面 的復習,我們可以把上節(jié)課所學的切線的定義作為識別切線的方法1——定義法:與圓只有一個公共點的直線是圓的切線。
2、當然,我們還可以由上節(jié)課所學的用圓心到直線的距離 與半徑 之間的關系來判斷直線與圓是否相切,即:當 時,直線與圓的位置關系是相切。以此作為識別切線的方法2——數(shù)量關系法:圓心到直線的距離等于半徑的直線是圓的切線 。
3、實驗:作⊙O的半徑OA,過A作l⊥OA可以發(fā)現(xiàn):
(1)直線 經(jīng)過半徑 的外端點 ;
(2)直線 垂直于半徑 。這樣我們就得到了從位 置上來判斷直線是圓的切線的方法3——位置關系法:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線。 理解并識記圓的切線的幾種方法,并比較應用。
通過實驗探究圓的切線的位置判別方法,深入理解它的兩個要義。
三、課堂練習
思考:現(xiàn)在,任意給定一個圓,你能不能作出圓的切線?應該如何作?
請學生回顧作圖過程,切線 是如何作出來的?它滿足哪些條件? 引導學生總結出:①經(jīng)過半徑外端;②垂直于這條半徑。
請學生繼續(xù)思考:這兩個條件缺少一個行不行? (學生畫出反例圖)
。▓D1) (圖2) 圖(3)
圖(1)中直線 經(jīng)過半徑外端,但不與半徑垂直; 圖(2)中直線 與半徑垂直,但不經(jīng)過半徑外端。 從以上兩個反例可以看出,只滿足其中一個條件的直線不是圓的切線。
最后引導學生分析,方法3實際上是從前一節(jié)所講的“圓 心到直線的距離等于半徑時直線和圓相切”這個結論直接得出來的,只是為了便于應用把它改寫成“經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線”這種形式。 試驗體會圓的位置判別方法。
理解位置判別方法的兩個要素。
。ㄋ模⿷门c拓展 例1、如圖,已知直線AB經(jīng)過⊙O上的點A,并且AB=OA,OBA=45,直線AB是⊙O的切線嗎?為什么?
例2、如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,BAD=B=30,邊BD交圓于點D。BD是⊙ O的切線嗎?為什么?
分析:欲證BD是⊙O的切線,由于BD過圓上點D,若連結OD,則BD過半徑OD的外端,因此只需證明BD⊥OD,因OA=OD,BAD=B,易證BD⊥OD。
教師板演,給出解答過程及格式。
課堂練習:課本練習1-4 先選擇方法,弄清位置判別方法與數(shù)量判別方法的本質(zhì)區(qū)別。
注意圓的切線的特征與識別的區(qū)別。
。ㄋ模┬〗Y與作業(yè) 識 別一條直線是圓的切線,有 三種方法:
。1)根據(jù)切線定義判定,即與圓只有一個公共點的直線是圓的切線;
。2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓的切線;
。3)根據(jù)直線的位置關系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的 切線,
說明一條直線是圓的切線,常常需要作輔助線,如果 已知直線過圓上某 一點,則作出過 這一點的半徑,證明直線垂直于半徑即可(如例2)。
各抒己見,談收獲。
(五)板書設計
識別一條直線是圓的切線,有三種方法: 例:
(1 )根據(jù)切線定義判定,即與圓只有一個公共點的直線是圓的切線;
。2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓 的切線;
(3)根據(jù)直線的位置關系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的 切線,
說明一條直線是圓的切線,常常需要作輔助線,如果已知直線過圓上某一點,則作出過 這一點的半徑,證明 直線垂直于半徑
。┙虒W后記
教學內(nèi)容 24。2圓的切線(2) 課型 新授課 課時 執(zhí)教
教學目標 通過探究,使學生發(fā)現(xiàn)、掌握切線長定理,并初步長定理,并初步學會應用切線長定理解決問題,同時通過從三角形紙片中剪出最大圓的實驗的過程中發(fā)現(xiàn)三角形內(nèi)切圓的畫法,能用內(nèi)心的性質(zhì)解決問題。
教學重點 切線長定理及其應用,三角形的內(nèi)切圓的畫法和內(nèi)心的性質(zhì)。
教學難點 三角形的內(nèi)心及其半徑的確定。
教具準備 投影儀,膠片
教學過程 教師 活動 學生活動
。ㄒ唬⿵土晫耄
請同學們回顧一下,如何判斷一條直線是圓的.切線?圓的切線具有什么性質(zhì)?(經(jīng)過半徑外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑。)
你能說明以下這個問題?
如右圖所示,PA是 的平分線,AB是⊙O的切線,切點E,那么AC是⊙O的切線嗎?為什么?
回顧舊知,看誰說的全。
利用舊知,分析解決該問題。
(二)
實踐與探索 問題1、從圓外一點可以作圓的幾條切線?請同學們畫一畫。
2、請問:這一點 與切點的 兩條線段的長度相等嗎?為什么?
3、切線長的定義是什么?
通過以 上幾個問題的解決,使同學們得出以下的結論:
從圓外一點可以引圓的兩條切線,切線長相等。這一點與圓心的連線
平分兩條切線的夾角。 在解決以上問題時,鼓勵同學們用不同的觀點、不同的知識來解決問題,它既可以用書上闡述的對稱的觀點解決,也可以用以前學習的其他知識來解決問題。
。ㄈ┩卣古c應用 例:右圖,PA、PB是,切點分別是A、B,直線EF也是⊙O的切線,切點為P,交PA、PB為E、F點,已知 , ,(1)求 的周長;(2)求 的度數(shù)。
解:(1)連結PA、PB、EF是⊙O的切線
所以 , ,
所以 的周長 (2)因為PA、PB、EF是⊙O的切線
所以 , ,,
所以
所以
畫圖分析探究,教學中應注重基本圖形的教學,引導學生發(fā)現(xiàn)基本圖形,應用基本圖形解決問題。
。ㄋ模┬〗Y與作業(yè) 談一下本節(jié)課的 收獲 ? 各抒己見,看誰 說得最好
。ㄎ澹┌鍟O計
切線(2)
切線長相等 例:
切線長性質(zhì)
點與圓心連 線平分兩切線夾角
。┙虒W后記
【初中數(shù)學設計教案】相關文章:
初中數(shù)學教案設計09-29
初中數(shù)學設計教案(14篇)03-02
初中數(shù)學設計教案15篇02-26
初中數(shù)學設計教案(15篇)03-01
初中數(shù)學設計教案14篇02-28
數(shù)學設計教案01-02
初中數(shù)學教案設計15篇02-09
初中數(shù)學教案設計(20篇)08-01