午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

初中數(shù)學教案

時間:2022-11-11 11:42:17 初中數(shù)學教案 我要投稿

初中數(shù)學教案集錦15篇

  在教學工作者開展教學活動前,通常會被要求編寫教案,教案是實施教學的主要依據(jù),有著至關重要的作用。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編幫大家整理的初中數(shù)學教案,希望對大家有所幫助。

初中數(shù)學教案集錦15篇

初中數(shù)學教案1

  一、教學目標:

  1.知識目標:

 、倌軠蚀_理解絕對值的幾何意義和代數(shù)意義。

 、谀軠蚀_熟練地求一個有理數(shù)的絕對值。

 、凼箤W生知道絕對值是一個非負數(shù),能更深刻地理解相反數(shù)的概念。

  2.能力目標:

 、俪醪脚囵B(yǎng)學生觀察、分析、歸納和概括的思維能力。

 、诔醪脚囵B(yǎng)學生由抽象到具體再到抽象的思維能力。

  3.情感目標:

 、偻ㄟ^向學生滲透數(shù)形結合思想和分類討論的思想,讓學生領略到數(shù)學的奧妙,從而激起他們的好奇心和求知欲望。

 、谕ㄟ^課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數(shù)學的快樂,從而增強他們的自信心。

  二、教學重點和難點

  教學重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。

  教學難點:絕對值定義的得出、意義的理解及求一個負數(shù)的絕對值。

  三、教學方法

  啟發(fā)引導式、討論式和談話法

  四、教學過程

 。ㄒ唬⿵土曁釂

  問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?

 。ǘ┬率

  1.引入

  結合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。

  2.數(shù)a的絕對值的.意義

 、賻缀我饬x

  一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|.

  舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)

  強調:表示0的點與原點的距離是0,所以|0|=0.

  指出:表示“距離”的數(shù)是非負數(shù),所以絕對值是一個非負數(shù)。

  ②代數(shù)意義

  把有理數(shù)分成正數(shù)、零、負數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.

  用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:

  指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。

  3.例題精講

  例1.求8,-8,,-的絕對值。

  按教材方法講解。

  例2.計算:|2.5|+|-3|-|-3|.

  解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

  例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。

  解:∵|2|=2,|-2|=2

  ∴這個數(shù)是2或-2.

  五、鞏固練習

  練習一:教材P641、2,P66習題2.4A組1、2.

  練習二:

  1.絕對值小于4的整數(shù)是____.

  2.絕對值最小的數(shù)是____.

  3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。

  六、歸納小結

  本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。

  七、布置作業(yè)

  教材P66習題2.4A組3、4、5.

初中數(shù)學教案2

  教學目標:

  1、引導同學們領略數(shù)學隱藏在生活中的迷人之處;

  2、培養(yǎng)同學們對數(shù)學的興趣。

  教學內容:

  生活中的數(shù)學。

  教學方法:

  啟發(fā)探索、小游戲

  教具安排:

  多媒體、剪紙、小剪刀三把

  教學過程:

  師:同學們,從小學到現(xiàn)在我們都在跟數(shù)學打交道,能說說大家對數(shù)學的感受嗎?

  學生討論。

  師:同學們,不管以前你們喜不喜歡數(shù)學,但老師要告訴大家,其實數(shù)學很有趣,它不僅出現(xiàn)在我們的課本,更隱藏在生活的每個角落,只要我們仔細探究,就會發(fā)現(xiàn)它在我們的周圍閃著迷人的光,希望大家從今天開始,喜歡數(shù)學,與數(shù)學成為好朋友,好好領略好朋友帶給我們的美的享受。事不宜遲,現(xiàn)在我們馬上開始我們的數(shù)學探究之旅。首先,我們來玩?zhèn)小游戲:

  請大家拿出筆和紙,根據(jù)下面的步驟來操作,你會有驚人的發(fā)現(xiàn)。(PPT演示)

  [1]首先,隨意挑一個數(shù)字(0、1、2、3、4、5、6、7)

  [2]把這個數(shù)字乘上2

  [3]然后加上5

  [4]再乘以50

  [5]如果你今年的生日已經過了,把得到的數(shù)目加上1759;如果還沒過,加1758

  [6]最后一個步驟,用這個數(shù)目減去你出生的那一年(公元的)

  師:發(fā)現(xiàn)了什么?第一個數(shù)字是不是你一開始選擇的數(shù)字呢?那接下來的兩個呢?如無意外,就是你的年齡了。是不是很有趣呢?至于為什么會這樣課后大家仔細想想自然就明白啦,這就是數(shù)學的魅力所在了。接下來我們來嘗試幫助格尼斯堡的居民解決下面的問題(PPT演示):格尼斯堡建造在普蕾爾河岸上。7座橋連接著兩個島和河岸,如圖所示:

  網路圖

  居民們的一項普遍愛好是嘗試在一次行走中跨過所有的7座橋而不

  重復經過任何一座橋。同學們,你們能幫助他們實現(xiàn)這個想法嗎?拿出紙和筆設計的路線。

  學生思考設計。

  師:同學們行嗎?事實上,著名數(shù)學家歐拉已經證明不能解決這個問題了,可是這是為什么呢?別急,我們繼續(xù)看下去。

  1944年的空襲,毀壞了大多數(shù)的舊橋,格尼斯堡在河上重新建了5座橋,如圖:

  B

  現(xiàn)在請同學們再嘗試一下,在一次行走中跨過所有的5座橋而不重復經過任何一座橋。

  學生思考。

  師:同學們,這次行得通了吧?那么為什么呢?有沒有同學可以說一下他的想法?

  其實,我們的歐拉大師經過研究大量類似的網絡,證明了這樣的事實(PPT演示):要走完一條路線而其中每一段行程只許經過一次,只有當奇數(shù)結點的數(shù)目是0或2時才是有可能的,在其他情況下,如果不走回頭路,就不能歷遍整個網絡。

  他還發(fā)現(xiàn):如果有兩個奇結點,那么經過整個路線的形成必須從一個

  奇結點開始,到另一個奇結點結束。

  師:我們來看一下是不是這樣的?第一個圖奇結點的個數(shù)為3,第二個圖奇結點的個數(shù)減少到2個了,看來真的是這樣的。

  現(xiàn)在請同學們自己在練習本上解決這個問題:(PPT演示)

  下面是一幅農場的大門的'圖。如果筆不離紙,又不重復經過任一條線,有沒有可能畫成它?

  學生思考討論。

  師:我們看到它的奇結點個數(shù)為4,由歐拉的證明我們知道不能一筆畫成。

  那如果農場主將門的形狀做成這樣呢?(PPT演示)

  學生嘗試。

  師:是不是可以啦,為什么呢?

  生:奇結點個數(shù)為2.

  師:這種不用走回頭路而歷遍整條線路的情況,不僅僅具有趣味性,在現(xiàn)實生活中具有很重要的實用性,比如,我們的郵遞員和煤氣抄表員,不走回頭路意味著可以節(jié)省很多寶貴的時間?磥恚瑪(shù)學并不像

  某些時候想的那樣沒什么用處了吧?

  下面我們繼續(xù)我們的奧秘之類吧。

  今天我們班有同學生日嗎?如果你生日,爸爸媽媽給你買了一個正方形的蛋糕,你要把它切成不同形狀的平均大小的7塊,怎么切?能行嗎?嘗試一下。

  其實很簡單,你只需要把正方形的周邊(即周長)分成7個等長,定出蛋糕的中心,從周邊劃分等長的標記切向中電,(如圖所示)即可。

  為什么呢?這里我們用到三角形等高等底面積相等的性質。

  吃完了蛋糕,我們來觀賞一下百合花。(PPT演示):

  一個鄉(xiāng)村的池塘里種了美麗的百合花,百合花生長得很快,使它們覆蓋的面積每天增加一倍。30天后,長滿了整個池塘,那么池塘只被百合花覆蓋一半時是多少天呢?同學們,你知道嗎?

  學生討論。

  師:答案是29天,多么神奇,是吧?潛意識里我們很難接受答案就是29天,只與30天差一天。但用數(shù)學我們很容易很清楚地知道是29天,奧秘就在“它們覆蓋的面積每天增加一倍”這句話里面。你看,數(shù)學是多么聰慧、多么神奇的家伙!

  其實,除了以上我們看到的一些有趣的數(shù)學影子外,我們的日常生

初中數(shù)學教案3

  教學目標:

  (一)知識與技能

  理解單項式及單項式系數(shù)、次數(shù)的概念;能準確迅速地確定一個單項式的系數(shù)和次數(shù);會用含字母的式子表示實際問題中的數(shù)量關系。

  (二)過程與方法

  1.在經歷用字母表示數(shù)量關系的過程中,發(fā)展符號感;

  2. 通過小組討論、合作學習等方式,經歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力

  (三)情感態(tài)度價值觀

  1.通過豐富多彩的現(xiàn)實情景,讓學生經歷從具體問題中抽象出數(shù)量關系,在解決問題中了解數(shù)學的價值,增長“用數(shù)學”的信心.

  2.通過用含字母的式子描述現(xiàn)實世界中的數(shù)量關系,認識到它是解決實際問題的重要數(shù)學工具之一。

  教學重、難點:

  重點:單項式及單項式系數(shù)、次數(shù)的概念。

  難點:單項式次數(shù)的概念;單項式的書寫格式及注意點。

  教學方法:

  引導——探究式

  在感性材料的基礎上,學生自主探究現(xiàn)實情景中用字母表示數(shù)的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導學生共同抽象、概括單項式及相關的概念.

  教具準備:

  多媒體課件、小黑板.

  教學過程:

  一、 創(chuàng)設情境,引入新課

  出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向學生介紹青藏鐵路所創(chuàng)造的歷史之最。

  情境問題:

  青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?

  設計意圖:從學生熟悉的情境出發(fā),創(chuàng)設情境,讓學生感受青藏鐵路的偉大成就,激發(fā)

  愛國主義情感,得到一次情感教育。

  解:根據(jù)路程、速度、時間之間的關系:路程=速度×時間

  2小時行駛的路程是:100×2=200(千米)

  3小時行駛的路程是:100×3=300(千米)

  t小時行駛的路程是:100×t=100t(千米)

  注意:在含有字母的式子中若出現(xiàn)乘號,通常將乘號寫作“ · ”或省略不寫。

  如:100×a可以寫成100a或100a。

  代數(shù)式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數(shù)和表示數(shù)的字母連接起來的式子。

  代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關系,本節(jié)我們就來學習最基本也是最重要的一類代數(shù)式整式。

  設計意圖:從學生已有的數(shù)學經驗:路程=速度×時間出發(fā),建立新舊知識之間的聯(lián)系

  讓學生歷一個從一般到特殊再到一般的認識過程,發(fā)展學生的認知觀念。

  二、合作交流,探究新知

  探究

  思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。

  1、邊長為a的正方體的表面積是__,體積是__.

  2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。

  3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。

  4、數(shù)n的相反數(shù)是__。

  解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

  思考:它們有什么共同的特點?

  6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

  單項式:數(shù)與字母、字母與字母的乘積。

  注意:單獨的一個數(shù)或字母也是單項式。

  設計意圖:從熟悉的實際背景出發(fā),充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,獲得數(shù)學猜想和數(shù)學經驗,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性。

  火眼金睛

  下列各代數(shù)式中哪些是單項式哪些不是?

  (1)a (2) 0 (3) a2

  (4) 6a (5)

  (6)

  (7)3a+2b (8)xy2

  設計意圖:加強學生對不同形式的單項式的直觀認識。

  解剖單項式

  系數(shù):單項式中的數(shù)字因數(shù)。

  如:-3x的系數(shù)是 ,-ab的系數(shù)是 , 的`系數(shù)是 。

  次數(shù):一個單項式中的所有字母的指數(shù)的和。

  如:-3x的次數(shù)是 ,ab的次數(shù)是 。

  小試身手

  單項式 2a 2 -1.2h xy2 -t2 -32x2y

  系數(shù)

  次數(shù)

  設計意圖:了解學生對單項式系數(shù)、次數(shù)的概念是否理解,找出存在的問題,從而進一步鞏固概念。

  單項式的注意點:

  (1)數(shù)與字母相乘時,數(shù)應寫在字母的___,且乘號可_________;

  (2)帶分數(shù)作為系數(shù)時,應改寫成_______的形式;

  (3)式子中若出現(xiàn)相除時,應把除號寫成____的形式;

  (4)把“1”或“-1”作為項的系數(shù)時,“1”可以__不寫。

  行家看門道

 、1x ②-1x

 、踑×3 ④a÷2

  ⑤ ⑥m的系數(shù)為1,次數(shù)為0

 、 的系數(shù)為2,次數(shù)為2

  設計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學生進一步明確注意點。

  三、例題講解,鞏固新知

  例1:用單項式填空,并指出它們的系數(shù)和次數(shù):

  (1)每包書有12冊,n包書有 冊;

  (2)底邊長為a,高為h的三角形的面積 ;

  (3)一個長方體的長和寬都是a,高是h,它的體積是 ;

  (4)一臺電視機原價a元,現(xiàn)按原價的9折出售,這臺電視機現(xiàn)在的售價

  為 元;

  (5)一個長方形的長0.9,寬是a,這個長方形的面積是 .

  解:(1)12n,它的系數(shù)是12,次數(shù)是1

  (2) ,它的系數(shù)是 , 次數(shù)是2;

  (3)a2h,它的系數(shù)是1,次數(shù)是3;

  (4)0.9a,它的系數(shù)是0.9,次數(shù)是1;

  (5)0.9a,它的系數(shù)是0.9,次數(shù)是1。

  設計意圖:學生能用單項式表示簡單的實際問題中的數(shù)量關系,并進一步鞏固單項式的系數(shù)、次數(shù)的概念。

  試一試

  你還能賦予0.9a一個含義嗎?

  設計意圖:同一個式子可以表示不同的含義,通過這個例子讓學生進一步體會式子更具有一般性,而且發(fā)散學生思維。

  大膽嘗試

  寫出一個單項式,使它的系數(shù)是2,次數(shù)是3.

  設計意圖:充分發(fā)揮學生的想象力,讓每一個學生都有獲得成功的體驗,為不同程度的學生一個展示自我的機會,激發(fā)他們的學習興趣。

  四、拓展提高

  嘗試應用

  用單項式填空,并指出它們的系數(shù)和次數(shù):

  (1)全校學生總數(shù)是x,其中女生占總數(shù)48%,則女生人數(shù)是 ,男生人數(shù)是 ;

  (2)一輛長途汽車從楊柳村出發(fā),3小時后到達相距s千米的溪河鎮(zhèn),這輛長途汽車的平均速度是 ;

  (3)產量由m千克增長10%,就達到 千克;

  設計意圖:讓學生感受單項式在實際生活中的應用,進一步掌握單項式及單項式系數(shù)、次數(shù)的概念。

  能力提升

  1、已知-xay是關于x、y的三次單項式,那么a= ,b= .

  2、若-ax2yb+1是關于x、y的五次單項式,且系數(shù)為-3,則a= ,b= .

  設計意圖:照顧學有余力的學生,拓展學生思維,讓學生體會跳一跳、摘桃子的樂趣。

  五、小結:

  本節(jié)課你感受到了嗎?

  生活中處處有數(shù)學

  本節(jié)課我們學了什么?你能說說你的收獲嗎?

  1、單項式的概念: 數(shù)與字母、字母與字母的乘積。

  2、單項式的系數(shù)、次數(shù)的概念。

  系數(shù):單項中的數(shù)字因數(shù);

  次數(shù):單項中所有字母的指數(shù)和。

  3、會用單項式表示實際問題中的數(shù)量關系,注意列式時式子要規(guī)范書寫。

  設計意圖:通過回顧和反思,讓學生看到自己的進步,激勵學生,使學生相信自己在今后的學習中不斷進步,不斷積累數(shù)學活動經驗,促進學生形成良好的心理品質。

  結束寄語

  悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發(fā)現(xiàn)!

  設計意圖:這是對學生的激勵也是對學生的一種期盼,可以增進師生間的情感交流。

  六、板書設計

  2.1 整式

  單項式概念 探究 例1 多

  單項式的系數(shù)概念 觀察交流 嘗試應用 媒

  單項式的次數(shù)概念 能力提升 體

  七、作業(yè):

  1.作業(yè)本(必做)。

  2. 請下面圖片設計一個故事情境,要求其中包含的數(shù)量關系能夠用單項式表示,并且指出它們的系數(shù)和次數(shù)(選做)。

  設計意圖:布置分層作業(yè),既讓學生掌握基礎知識,又使學有余力的學生有所提高。讓學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,活躍學生思維,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的競爭意識。

  八、設計理念:

  本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。

  針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將提供大量感性材料,以啟發(fā)引導為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,同時注重培養(yǎng)學生由感性認識上升到理性認識,為進一步學習同類項打下堅實的基礎。

初中數(shù)學教案4

  問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?

  這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的`方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?

  同學們動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  這正是我們本章要解決的問題。

  三、鞏固練習

  1、教科書第3頁練習1、2。

  2、補充練習:檢驗下列各括號內的數(shù)是不是它前面方程的解。

 。1)x-3(x+2)=6+x(x=3,x=-4)

 。2)2y(y-1)=3(y=-1,y=2)

 。3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小結。本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

  五、作業(yè)。教科書第3頁,習題6。1第1、3題。

  解一元一次方程

  1、方程的簡單變形

  教學目的

  通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。

  重點、難點

  1、重點:方程的兩種變形。

  2、難點:由具體實例抽象出方程的兩種變形。

  教學過程

  一、引入

  上一節(jié)課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。

  二、新授

  讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。

  測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質量相等。

  如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。

  如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?

  讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。

初中數(shù)學教案5

  教學目標

  1筆寡生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值;

  2迸嘌學生準確地運算能力,并適當?shù)貪B透特殊與一般的辨證關系的思想。

  教學重點和難點

  重點和難點:正確地求出代數(shù)式的值

  課堂教學過程設計

  一、從學生原有的認識結構提出問題

  1庇么數(shù)式表示:(投影)

  (1)a與b的和的平方;(2)a,b兩數(shù)的平方和;

  (3)a與b的和的50%

  2庇糜镅孕鶚齟數(shù)式2n+10的意義

  3倍雜詰2題中的代數(shù)式2n+10,可否編成一道實際問題呢?(在學生回答的基礎上,教師打投影)

  某學校為了開展體育活動,要添置一批排球,每班配2個,學校另外留10個,如果這個學校共有n個班,總共需多少個排球?

  若學校有15個班(即n=15),則添置排球總數(shù)為多少個?若有20個班呢?

  最后,教師根據(jù)學生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當班數(shù)n取不同的數(shù)值時,代數(shù)式2n+10的計算結果也不同,顯然,當n=15時,代數(shù)式的值是40;當n=20時,代數(shù)式的值是50蔽頤墻上面計算的結果40和50,稱為代數(shù)式2n+10當n=15和n=20時的值閉餼褪潛窘誑撾頤墻要學習研究的內容

  二、師生共同研究代數(shù)式的值的意義

  1庇檬值代替代數(shù)式里的字母,按代數(shù)式指明的運算,計算后所得的結果,叫做代數(shù)式的值

  2苯岷仙鮮隼題,提出如下幾個問題:

  (1)求代數(shù)式2x+10的值,必須給出什么條件?

  (2)代數(shù)式的值是由什么值的確定而確定的?

  當教師引導學生說出:“代數(shù)式的值是由代數(shù)式里字母的取值的確定而確定的”之后,可用圖示幫助學生加深印象

  然后,教師指出:只要代數(shù)式里的字母給定一個確定的值,代數(shù)式就有唯一確定的值與它對應

  (3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應注意什么呢?

  下面教師結合例題來引導學生歸納,概括出上述問題的答案(教師板書例題時,應注意格式規(guī)范化)

  例1當x=7,y=4,z=0時,求代數(shù)式x(2x-y+3z)的值

  解:當x=7,y=4,z=0時,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70

  注意:如果代數(shù)式中省略乘號,代入后需添上乘號

  例2根據(jù)下面a,b的值,求代數(shù)式a2-的值

  (1)a=4,b=12,(2)a=1,b=1

  解:(1)當a=4,b=12時,

  a2-=42-=16-3=13;

  (2)當a=1,b=1時,

  a2-=-=

  注意(1)如果字母取值是分數(shù),作乘方運算時要加括號;

  (2)注意書寫格式,“當……時”的字樣不要丟;

  (3)代數(shù)式里的字母可取不同的值,但是所取的值不應當使代數(shù)式或代數(shù)式所表示的'數(shù)量關系失去實際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個數(shù),n不能取分數(shù)最后,請學生總結出求代數(shù)值的步驟:①代入數(shù)值②計算結果

  三、課堂練習

  1(1)當x=2時,求代數(shù)式x2-1的值;

  (2)當x=,y=時,求代數(shù)式x(x-y)的值

  2鋇盿=,b=時,求下列代數(shù)式的值:

  (1)(a+b)2;(2)(a-b)2

  3鋇眡=5,y=3時,求代數(shù)式的值

  答案:1.(1)3;(2);2.(1);(2);3..

  四、師生共同小結

  首先,請學生回答下面問題:

  1北窘誑窩習了哪些內容?

  2鼻蟠數(shù)式的值應分哪幾步?

  3痹“代入”這一步應注意什么”

  其次,結合學生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母按照代數(shù)式的運算順序,直接計算后所得的結果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.

  五、作業(yè)

  當a=2,b=1,c=3時,求下列代數(shù)式的值:(1)c-(c-a)(c-b);

  今天的內容就介紹到這里了。

初中數(shù)學教案6

  學習目標

  1.理解平行線的意義兩條直線的兩種位置關系;

  2.理解并掌握平行公理及其推論的內容;

  3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;

  學習重點

  探索和掌握平行公理及其推論.

  學習難點

  對平行線本質屬性的理解,用幾何語言描述圖形的性質

  一、學習過程:預習提問

  兩條直線相交有幾個交點?

  平面內兩條直線的位置關系除相交外,還有哪些呢?

 。ㄒ唬┊嬈叫芯

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據(jù)此方法練習畫平行線:

  已知:直線a,點B,點C.

  (1)過點B畫直線a的平行線,能畫幾條?

  (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

 。ǘ┢叫泄砑巴普

  1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

 、谶^點C畫直線a的平行線,能畫 條;

 、勰惝嫷闹本有什么位置關系? 。

 、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

 。ㄒ唬┻x擇題:

  1、下列推理正確的是 ( )

  A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

  C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

  2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為( )

  A.0個 B.1個 C.2個 D.3個

 。ǘ┨羁疹}:

  1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。

  2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的`位置關系:

  (1)L1與L2 沒有公共點,則 L1與L2 ;

 。2)L1與L2有且只有一個公共點,則L1與L2 ;

 。3)L1與L2有兩個公共點,則L1與L2 。

  3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

  4、平面內有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。

  三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

初中數(shù)學教案7

  問題描述:

  初中數(shù)學教學案例

  初中的,隨便那個年級.20xx字.案例和反思

  1個回答 分類:數(shù)學 20xx-11-30

  問題解答:

  我來補答

  2.3 平行線的性質

  一、教材分析:

  本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節(jié) 平行線的性質,它是平行線及直線平行的繼續(xù),是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.

  二、教學目標:

  知識與技能:掌握平行線的性質,能應用性質解決相關問題.

  數(shù)學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程.

  解決問題:通過探究平行線的性質,使學生形成數(shù)形結合的數(shù)學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神.

  情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數(shù)學的熱情和勇于探索、鍥而不舍的精神.

  三、教學重、難點:

  重點:平行線的性質

  難點:“性質1”的`探究過程

  四、教學方法:

  “引導發(fā)現(xiàn)法”與“動像探索法”

  五、教具、學具:

  教具:多媒體課件

  學具:三角板、量角器.

  六、教學媒體:大屏幕、實物投影

  七、教學過程:

 。ㄒ唬﹦(chuàng)設情境,設疑激思:

  1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.

  2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?

  學生活動:

  思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;

  教師:首先肯定學生的回答,然后提出問題.

  問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?

  引出課題——平行線的性質.

 。ǘ⿺(shù)形結合,探究性質

  1.畫圖探究,歸納猜想

  任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).

  問題一:指出圖中的同位角,并度量這些角,把結果填入下表:

  第一組

  第二組

  第三組

  第四組

  同位角

  ∠1

  ∠5

  角的度數(shù)

  數(shù)量關系

  學生活動:畫圖——度量——填表——猜想

  結論:兩直線平行,同位角相等.

  問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?

  學生:探究、討論,最后得出結論:仍然成立.

  2.教師用《幾何畫板》課件驗證猜想

  3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)

 。ㄈ┮晁伎,培養(yǎng)創(chuàng)新

  問題三:請判斷內錯角、同旁內角各有什么關系?

  學生活動:獨立探究——小組討論——成果展示.

  教師活動:引導學生說理.

  因為a‖b 因為a‖b

  所以∠1=∠2 所以∠1=∠2

  又 ∠1=∠3 又 ∠1+∠4=180°

  所以∠2=∠3 所以∠2+∠4=180°

  語言敘述:

  性質2 兩條直線被第三條直線所截,內錯角相等.

 。▋芍本平行,內錯角相等)

  性質3 兩條直線被第三條直線所截,同旁內角互補.

  (兩直線平行,同旁內角互補)

  (四)實際應用,優(yōu)勢互補

  1.(搶答)

 。1)如圖,平行線AB、CD被直線AE所截

 、偃簟1 = 110°,則∠2 = °.理由:.

 、谌簟1 = 110°,則∠3 = °.理由:.

 、廴簟1 = 110°,則∠4 = °.理由:.

 。2)如圖,由AB‖CD,可得( )

 。ˋ)∠1=∠2 (B)∠2=∠3

 。–)∠1=∠4 (D)∠3=∠4

 。3)如圖,AB‖CD‖EF,

  那么∠BAC+∠ACE+∠CEF=( )

  (A) 180°(B)270° (C)360° (D)540°

 。4)誰問誰答:如圖,直線a‖b,

  如:∠1=54°時,∠2= .

  學生提問,并找出回答問題的同學.

  2.(討論解答)

  如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,

  ∠B=115°,求梯形另外兩角分別是多少度?

  (五)概括存儲(小結)

  1.平行線的性質1、2、3;

  2.用“運動”的觀點觀察數(shù)學問題;

  3.用數(shù)形結合的方法來解決問題.

 。┳鳂I(yè) 第69頁 2、4、7.

  八、教學反思:

 、俳痰霓D變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發(fā)現(xiàn)結論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關系,激發(fā)學生自覺地探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣.

 、趯W的轉變:學生的角色從學會轉變?yōu)闀䦟W.本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.

  ③課堂氛圍的轉變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值.

初中數(shù)學教案8

  教學目標

  1.經歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。

  2.通過驗證過程中數(shù)與形的結合,體會數(shù)形結合的思想以及數(shù)學知識之間內在聯(lián)系,每一部分知識并不是孤立的。

  3.通過豐富有趣的拼圖活動,經歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經驗。

  4.通過獲得成功的體驗和克服困難的經歷,增進數(shù)學學習的信心。通過豐富有趣拼的圖活動增強對數(shù)學學習的.興趣。

  重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。

  2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經驗。

  難點利用數(shù)形結合的方法驗證公式

  教學方法動手操作,合作探究課型新授課教具投影儀

  教師活動學生活動

  情景設置:

  你已知道的關于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)

  新課講解:

  把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學史上被傳為佳話。他是這樣分析的,如圖所示:

  教師接著在介紹教材第94頁例題的拼法及相關公式

  提問:還能通過怎樣拼圖來解決以下問題

 。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應的等式;

 。2)任意寫出一個關于a、b的二次三項式,如a2+4ab+3b2

  試用拼一個長方形的方法,把這個二次三項式因式分解。

  這個問題要給予學生充足的時間和空間進行討論和拼圖,教師在這要引導適度,不要限制學生思維,同時鼓勵學生在拼圖過程中進行交流合作

  了解學生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據(jù)不同學生的不同狀況給予適當?shù)囊龑,引導學生整理結論。

  小結:

  從這節(jié)課中你有哪些收獲?

 。ń處煈o予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結。)

  學生回答

  a(b+c+d)=ab+ac+ad

 。╝+b)(c+d)=ac+ad+bc+bd

  (a+b)2=a2+2ab+b2

  學生拿出準備好的硬紙板制作

  給學生充分的時間進行拼圖、思考、交流經驗,對于有困難的學生教師要給予適當引導。

  作業(yè)第95頁第3題

  板書設計

  復習例1板演

  ………………

  ………………

  ……例2……

  ………………

  ………………

  教學后記

初中數(shù)學教案9

  今天小編為大家精心整理了一篇有關初中數(shù)學教案之公式的相關內容,以供大家閱讀!

  教學設計示例一——公式

  教學目標

  1.了解公式的意義,使學生能用公式解決簡單的實際問題;

  2.初步培養(yǎng)學生觀察、分析及概括的能力;

  3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

  教學建議

  一、教學重點、難點

  重點:通過具體例子了解公式、應用公式.

  難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

  二、重點、難點分析

  人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

  三、知識結構

  本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

  四、教法建議

  1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

  2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

  3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

  教學設計示例二——公式

  一、教學目標

  (一)知識教學點

  1.使學生能利用公式解決簡單的實際問題.

  2.使學生理解公式與代數(shù)式的關系.

  (二)能力訓練點

  1.利用數(shù)學公式解決實際問題的能力.

  2.利用已知的公式推導新公式的能力.

 。ㄈ┑掠凉B透點

  數(shù)學來源于生產實踐,又反過來服務于生產實踐.

  (四)美育滲透點

  數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的簡潔美.

  二、學法引導

  1.數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的`公式為基礎、突破難點

  2.學生學法:觀察分析推導計算

  三、重點、難點、疑點及解決辦法

  1.重點:利用舊公式推導出新的圖形的計算公式.

  2.難點:同重點.

  3.疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀,自制膠片。

  六、師生互動活動設計

  教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.

  七、教學步驟

  (一)創(chuàng)設情景,復習引入

  師:同學們已經知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏.

  在學生說出幾個公式后,師提出本節(jié)課我們應在小學學習的基礎上,研究如何運用公式解決實際問題.

  板書:公式

  師:小學里學過哪些面積公式?

  板書:S=ah

 。ǔ鍪就队1)。解釋三角形,梯形面積公式

  【教法說明】讓學生感知用割補法求圖形的面積。

 。ǘ┨剿髑笾v授新課

  師:下面利用面積公式進行有關計算

 。ǔ鍪就队2)

  例1如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積S。

  師生共同分析:1.根據(jù)梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現(xiàn)在知道嗎?

  2.題中“M”是什么意思?(師補充說明厘米可寫作cm,千米寫作km,平方厘米寫作等)

  學生口述解題過程,教師予以指正并指出,強調解題的規(guī)范性.

  【教法說明】1.通過分析,引導學生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量.2.用公式計算時,要先寫出公式,然后代入計算,養(yǎng)成良好的解題習慣.

 。ǔ鍪就队3)

  例2如圖是一個環(huán)形,外圓半徑,內圓半徑求這個環(huán)形的面積

  學生討論:1.環(huán)形是怎樣形成的.2.如何求環(huán)形的面積討論后請學生板演,其他同學做在練習本上,教育巡回指導.

  評講時注意1.如果有學生作了簡便計算,則給予表揚和鼓勵:如果沒有學生這樣計算,則啟發(fā)學生這樣計算.

  2.本題實際上是由圓的面積公式推導出環(huán)形面積公式.

  3.進一步強調解題的規(guī)范性

  教法說明,讓學生做例題,學生能自己評判對與錯,優(yōu)與劣,是獲取知識的一個很好的途徑.

  測試反饋,鞏固練習

 。ǔ鍪就队4)

  1.計算底,高的三角形面積

  2.已知長方形的長是寬的1.6倍,如果用a表示寬,那么這個長方形的周長是多少?當時,求t

  3.已知圓的半徑,,求圓的周長C和面積S

  4.從A地到B地有20千米上坡路和30千米下坡路,某車上坡時每小時走千米,下坡時每小時走千米。

  (1)求A地到B地所用的時間公式。

 。2)若千米/時,千米/時,求從A地到B地所用的時間。

  學生活動:分兩次完成,每次兩題,兩人板演,其他同學在練習本上完成,做好后同桌交換評判,第一次可請兩位基礎較差的同學板演,第二次請中等層次的學生板演.

  【教法說明】面向全體,分層教學,能照顧兩極,使所有的同學有所發(fā)展.

  師:公式本身是用等號聯(lián)接起來的代數(shù)式,許多公式在實際中都有重要的用處,可以用公式直接計算還可以利用公式推導出新的公式.

  八、隨堂練習

 。ㄒ唬┨羁

  1.圓的半徑為R,它的面積________,周長_____________

  2.平行四邊形的底邊長是,高是,它的面積_____________;如果,,那么_________

  3.圓錐的底面半徑為,高是,那么它的體積__________如果,,那么_________

 。ǘ┮环N塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積V,如果,,,V是多少?

  九、布置作業(yè)

  (一)必做題課本第xx頁x、x、x第xx頁x組x

  (二)選做題課本第xx頁xx組x

初中數(shù)學教案10

  生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。

  側棱:相鄰兩個側面的交線。棱柱的所有側棱長都相等。

  底面:棱柱有上、下兩個底面,形狀相同。

  側面:棱柱的側面都是平行四邊形。

  立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。

  棱柱:分為直棱柱、斜棱柱。直棱柱的側面是長方形。

  特殊的`四棱柱:長方體、正方體。正方體的每個面都是正方形。

  圓柱:上、下兩個面都是圓形,側面展開圖是長方形。

  圓錐:底面是圓形,側面展開圖是扇形。

  截面:用一個平面去截一個幾何體,截出的面。

  球:用一個平面去截,截面圖形是圓形。

  正方體的截面:可以是正方形、長方形、梯形、三角形。

  圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。

  展開與折疊:兩個面出現(xiàn)在同一位置的展開圖形,是不可折疊的。

  從三個方向看物體的形狀:正面看(主視圖)、左面看(側視圖)、上面看(俯視圖)

初中數(shù)學教案11

  一、指導思想

  教育教學工作是一個頭緒眾多的系統(tǒng)工程,在紛繁的頭緒中需要各項工作有序進展,尤為重要的是強化常規(guī),做好細節(jié),教學常規(guī)是對學校教學工作的基本要求,落實教學常規(guī)是學校教學工作得以正常有序開展的根本保證。只有搞好教學常規(guī)才有可能獲得成功的教育。教師教學水平的.高低體現(xiàn)于教學各個步驟的細節(jié)中,空洞地談教學能力是蒼白的,只有用教師的備課情況、講課細節(jié)、作業(yè)批改情況。教學常規(guī)培養(yǎng)著教師的基本功,決定著教師的教學能力,可以說教師的教學水平就是在這些常規(guī)細節(jié)中培養(yǎng)起來。

  二、檢查反饋

  本次檢查大多數(shù)教師都比較重視,檢查內容完整、全面。現(xiàn)將檢查情況總結如下教案方面的特點與不足。

  特點:

  1、絕大多數(shù)教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文等能突出對學科素養(yǎng)的高度關注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學的反思意識,反思深刻、務實、有針對性。

  2、教學環(huán)節(jié)齊全,注重引語與小結,使教學設計前后呼應,環(huán)節(jié)完整。

  3、注重選擇恰當?shù)慕虒W方法,注重在靈活多樣的教學方法中培養(yǎng)學生的合作意識和創(chuàng)新精神。

  4、教案能體現(xiàn)多媒體教學手段,注重培養(yǎng)學生的探究精神和創(chuàng)新能力。

  不足:

  1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。

  2、個別教師教案過于簡單。

  作業(yè)方面的特點與不足

  特點:

  1、能按進度布置作業(yè),作業(yè)設置量度適中,難易適中,上交率較高,且都能做到全批全改。

  2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的錯誤做法及糾正措施。

  不足:

  1、對于學生書寫的工整性,還需加強教育。

  2、教師在批閱作業(yè)時,要稍細心些,發(fā)現(xiàn)問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。

初中數(shù)學教案12

  知識技能目標

  1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質;

  2、利用反比例函數(shù)的圖象解決有關問題。

  過程性目標

  1、經歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質;

  2、探索反比例函數(shù)的圖象的性質,體會用數(shù)形結合思想解數(shù)學問題。

  教學過程

  一、創(chuàng)設情境

  上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質。

  二、探究歸納

  1、畫出函數(shù)的圖象。

  分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。

  解

  1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:

  2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。

  3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。

  上述圖象,通常稱為雙曲線(hyperbola)。

  提問這兩條曲線會與x軸、y軸相交嗎?為什么?

  學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。

  學生討論、交流以下問題,并將討論、交流的結果回答問題。

  1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?

  2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內?由什么確定?

  3、聯(lián)系一次函數(shù)的性質,你能否總結出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

  反比例函數(shù)有下列性質:

 。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;

 。2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。

  注

  1、雙曲線的兩個分支與x軸和y軸沒有交點;

  2、雙曲線的兩個分支關于原點成中心對稱。

  以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?

  在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。

  在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。

  三、實踐應用

  例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

  分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。

  解由題意,得解得。

  例2已知反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經過的象限。

  分析由于反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。

  解因為反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經過一、二、四象限。

  例3已知反比例函數(shù)的圖象過點(1,—2)。

 。1)求這個函數(shù)的解析式,并畫出圖象;

 。2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?

  分析(1)反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;

  (2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。

  解(1)設:反比例函數(shù)的解析式為:(k≠0)。

  而反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。

  所以,k=—2。

  即反比例函數(shù)的解析式為:。

 。2)點A(—5,m)在反比例函數(shù)圖象上,所以,

  點A的坐標為。

  點A關于x軸的對稱點不在這個圖象上;

  點A關于y軸的對稱點不在這個圖象上;

  點A關于原點的對稱點在這個圖象上;

  例4已知函數(shù)為反比例函數(shù)。

 。1)求m的值;

 。2)它的圖象在第幾象限內?在各象限內,y隨x的'增大如何變化?

 。3)當—3≤x≤時,求此函數(shù)的最大值和最小值。

  解(1)由反比例函數(shù)的定義可知:解得,m=—2。

  (2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。

  (3)因為在第個象限內,y隨x的增大而增大,

  所以當x=時,y最大值=;

  當x=—3時,y最小值=。

  所以當—3≤x≤時,此函數(shù)的最大值為8,最小值為。

  例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

 。1)寫出用高表示長的函數(shù)關系式;

 。2)寫出自變量x的取值范圍;

 。3)畫出函數(shù)的圖象。

  解(1)因為100=5xy,所以。

 。2)x>0。

 。3)圖象如下:

  說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內的一個分支。

  四、交流反思

  本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質。

  1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

  2、反比例函數(shù)有如下性質:

 。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;

  (2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。

  五、檢測反饋

  1、在同一直角坐標系中畫出下列函數(shù)的圖象:

  (1);(2)。

  2、已知y是x的反比例函數(shù),且當x=3時,y=8,求:

 。1)y和x的函數(shù)關系式;

 。2)當時,y的值;

  (3)當x取何值時,?

  3、若反比例函數(shù)的圖象在所在象限內,y隨x的增大而增大,求n的值。

  4、已知反比例函數(shù)經過點A(2,—m)和B(n,2n),求:

  (1)m和n的值;

 。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0

初中數(shù)學教案13

  教學目的

  1、使學生了解無理數(shù)和實數(shù)的概念,掌握實數(shù)的分類,會準確判斷一個數(shù)是有理數(shù)還是無理數(shù)。

  2、使學生能了解實數(shù)絕對值的意義。

  3、使學生能了解數(shù)軸上的點具有一一對應關系。

  4、由實數(shù)的分類,滲透數(shù)學分類的思想。

  5、由實數(shù)與數(shù)軸的一一對應,滲透數(shù)形結合的思想。

  教學分析

  重點:無理數(shù)及實數(shù)的概念。

  難點:有理數(shù)與無理數(shù)的區(qū)別,點與數(shù)的一一對應。

  教學過程

  一、復習

  1、什么叫有理數(shù)?

  2、有理數(shù)可以如何分類?

 。ò炊x分與按大小分。)

  二、新授

  1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。

  判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。

  2、實數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。

  3、按課本中列表,將各數(shù)間的`聯(lián)系介紹一下。

  除了按定義還能按大小寫出列表。

  4、實數(shù)的相反數(shù):

  5、實數(shù)的絕對值:

  6、實數(shù)的運算

  講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

  例2,判斷題:

 。1)任何實數(shù)的偶次冪是正實數(shù)。( )

  (2)在實數(shù)范圍內,若| x|=|y|則x=y。( )

 。3)0是最小的實數(shù)。( )

  (4)0是絕對值最小的實數(shù)。( )

  解:略

  三、練習

  P148 練習:3、4、5、6。

  四、小結

  1、今天我們學習了實數(shù),請同學們首先要清楚,實數(shù)是如何定義的,它與有理數(shù)是怎樣的關系,二是對實數(shù)兩種不同的分類要清楚。

  2、要對應有理數(shù)的相反數(shù)與絕對值定義及運算律和運算性質,來理解在實數(shù)中的運用。

  五、作業(yè)

  1、P150 習題A:3。

  2、基礎訓練:同步練習1。

初中數(shù)學教案14

  教學目標

 。1)認知目標

  理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關的實際問題。

  (2)技能目標

  經歷從分數(shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學生類比的探究能力,加深對從特殊到一般數(shù)學的思想認識。

 。3)情感態(tài)度與價值觀

  教學中讓學生在主動探究,合作交流中滲透類比轉化的思想,使學生在學知識的同時感受探索的樂趣和成功的體驗。

  教學重難點

  重點:運用分式的乘除法法則進行運算。

  難點:分子、分母為多項式的分式乘除運算。

  教學過程

 。ㄒ唬┨岢鰡栴},引入課題

  俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:

  問題1:求容積的高是,(引出分式乘法的學習需要)。

  問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學習需要)。

  從實際出發(fā),引出分式的乘除的實在存在意義,讓學生感知學習分式的乘法和除法的實際需要,從而激發(fā)學生興趣和求知欲。

  (二)類比聯(lián)想,探究新知

  從學生熟悉的分數(shù)的乘除法出發(fā),引發(fā)學生的學習興趣。

  解后總結概括:

  (1)式是什么運算?依據(jù)是什么?

 。2)式又是什么運算?依據(jù)是什么?能說出具體內容嗎?(如果有困難教師應給于引導,學生應該能說出依據(jù)的是:分數(shù)的`乘法和除法法則)教師加以肯定,并指出與分數(shù)的乘除法法則類似,引導學生類比分數(shù)的乘除法則,猜想出分式的乘除法則。

 。ǚ质降某顺ǚ▌t)

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

  (三)例題分析,應用新知

  師生活動:教師參與并指導,學生獨立思考,并嘗試完成例題。

  P11的例1,在例題分析過程中,為了突出重點,應多次回顧分式的乘除法法則,使學生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和學生一起詳細分析,提醒學生關注易錯易漏的環(huán)節(jié),學會解題的方法。

 。ㄋ模┚毩曥柟,培養(yǎng)能力

  P13練習第2題的(1)、(3)、(4)與第3題的(2)。

  師生活動:教師出示問題,學生獨立思考解答,并讓學生板演或投影展示學生的解題過程。

  通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結合的原則。讓學生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結果。

 。ㄎ澹┱n堂小結,回扣目標

  引導學生自主進行課堂小結:

  1、本節(jié)課我們學習了哪些知識?

  2、在知識應用過程中需要注意什么?

  3、你有什么收獲呢?

  師生活動:學生反思,提出疑問,集體交流。

 。┎贾米鳂I(yè)

  教科書習題6.2第1、2(必做)練習冊P(選做),我設計了必做題和選做題,必做題是對本節(jié)課內容的一個反饋,選做題是對本節(jié)課知識的一個延伸。

  板書設計

  在本節(jié)課中我將采用提綱式的板書設計,因為提綱式—條理清楚、從屬關系分明,給人以清晰完整的印象,便于學生對教材內容和知識體系的理解和記憶。

初中數(shù)學教案15

  教學目標

  1.使學生正確理解的意義,掌握的三要素;

  2.使學生學會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;

  3.使學生初步理解數(shù)形結合的思想方法.

  教學重點和難點

  重點:初步理解數(shù)形結合的思想方法,正確掌握畫法和用上的點表示有理數(shù).

  難點:正確理解有理數(shù)與上點的對應關系.

  課堂教學過程 設計

  一、從學生原有認知結構提出問題

  1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?

  2.用“射線”能不能表示有理數(shù)?為什么?

  3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?

  待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容——.

  二、講授新課

  讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的.不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

  與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

  2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

  3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  在此基礎上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.

  進而提問學生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.

  三、運用舉例 變式練習

  例1 畫一個,并在上畫出表示下列各數(shù)的點:

  例2 指出上A,B,C,D,E各點分別表示什么數(shù).

  課堂練習

  示出來.

  2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?

  最后引導學生得出結論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.

  四、小結

  指導學生閱讀教材后指出:是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關系,它揭示了數(shù)和形之間的內在聯(lián)系,為我們研究問題提供了新的方法.

  本節(jié)課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.

  五、作業(yè)

  1.在下面上:

  (1)分別指出表示-2,3,-4,0,1各數(shù)的點.

  (2)A,H,D,E,O各點分別表示什么數(shù)?

  2.在下面上,A,B,C,D各點分別表示什么數(shù)?

  3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數(shù)的點:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

【初中數(shù)學教案】相關文章:

初中數(shù)學教案08-12

角初中數(shù)學教案12-30

人教版初中數(shù)學教案07-17

初中數(shù)學教案模板11-02

【熱門】初中數(shù)學教案11-18

【精】初中數(shù)學教案11-21

初中數(shù)學教案【精】11-19

初中數(shù)學教案【推薦】11-22

初中數(shù)學教案【熱門】11-20

【薦】初中數(shù)學教案11-26