初中數(shù)學教案集錦15篇
在教學工作者開展教學活動前,通常會被要求編寫教案,教案是實施教學的主要依據(jù),有著至關重要的作用。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編幫大家整理的初中數(shù)學教案,希望對大家有所幫助。
初中數(shù)學教案1
一、教學目標:
1.知識目標:
、倌軠蚀_理解絕對值的幾何意義和代數(shù)意義。
、谀軠蚀_熟練地求一個有理數(shù)的絕對值。
、凼箤W生知道絕對值是一個非負數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標:
、俪醪脚囵B(yǎng)學生觀察、分析、歸納和概括的思維能力。
、诔醪脚囵B(yǎng)學生由抽象到具體再到抽象的思維能力。
3.情感目標:
、偻ㄟ^向學生滲透數(shù)形結合思想和分類討論的思想,讓學生領略到數(shù)學的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數(shù)學的快樂,從而增強他們的自信心。
二、教學重點和難點
教學重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。
教學難點:絕對值定義的得出、意義的理解及求一個負數(shù)的絕對值。
三、教學方法
啟發(fā)引導式、討論式和談話法
四、教學過程
。ㄒ唬⿵土曁釂
問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?
。ǘ┬率
1.引入
結合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。
2.數(shù)a的絕對值的.意義
、賻缀我饬x
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|.
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)
強調:表示0的點與原點的距離是0,所以|0|=0.
指出:表示“距離”的數(shù)是非負數(shù),所以絕對值是一個非負數(shù)。
②代數(shù)意義
把有理數(shù)分成正數(shù)、零、負數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.
用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:
指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。
3.例題精講
例1.求8,-8,,-的絕對值。
按教材方法講解。
例2.計算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。
解:∵|2|=2,|-2|=2
∴這個數(shù)是2或-2.
五、鞏固練習
練習一:教材P641、2,P66習題2.4A組1、2.
練習二:
1.絕對值小于4的整數(shù)是____.
2.絕對值最小的數(shù)是____.
3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。
六、歸納小結
本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。
七、布置作業(yè)
教材P66習題2.4A組3、4、5.
初中數(shù)學教案2
教學目標:
1、引導同學們領略數(shù)學隱藏在生活中的迷人之處;
2、培養(yǎng)同學們對數(shù)學的興趣。
教學內容:
生活中的數(shù)學。
教學方法:
啟發(fā)探索、小游戲
教具安排:
多媒體、剪紙、小剪刀三把
教學過程:
師:同學們,從小學到現(xiàn)在我們都在跟數(shù)學打交道,能說說大家對數(shù)學的感受嗎?
學生討論。
師:同學們,不管以前你們喜不喜歡數(shù)學,但老師要告訴大家,其實數(shù)學很有趣,它不僅出現(xiàn)在我們的課本,更隱藏在生活的每個角落,只要我們仔細探究,就會發(fā)現(xiàn)它在我們的周圍閃著迷人的光,希望大家從今天開始,喜歡數(shù)學,與數(shù)學成為好朋友,好好領略好朋友帶給我們的美的享受。事不宜遲,現(xiàn)在我們馬上開始我們的數(shù)學探究之旅。首先,我們來玩?zhèn)小游戲:
請大家拿出筆和紙,根據(jù)下面的步驟來操作,你會有驚人的發(fā)現(xiàn)。(PPT演示)
[1]首先,隨意挑一個數(shù)字(0、1、2、3、4、5、6、7)
[2]把這個數(shù)字乘上2
[3]然后加上5
[4]再乘以50
[5]如果你今年的生日已經過了,把得到的數(shù)目加上1759;如果還沒過,加1758
[6]最后一個步驟,用這個數(shù)目減去你出生的那一年(公元的)
師:發(fā)現(xiàn)了什么?第一個數(shù)字是不是你一開始選擇的數(shù)字呢?那接下來的兩個呢?如無意外,就是你的年齡了。是不是很有趣呢?至于為什么會這樣課后大家仔細想想自然就明白啦,這就是數(shù)學的魅力所在了。接下來我們來嘗試幫助格尼斯堡的居民解決下面的問題(PPT演示):格尼斯堡建造在普蕾爾河岸上。7座橋連接著兩個島和河岸,如圖所示:
網路圖
居民們的一項普遍愛好是嘗試在一次行走中跨過所有的7座橋而不
重復經過任何一座橋。同學們,你們能幫助他們實現(xiàn)這個想法嗎?拿出紙和筆設計的路線。
學生思考設計。
師:同學們行嗎?事實上,著名數(shù)學家歐拉已經證明不能解決這個問題了,可是這是為什么呢?別急,我們繼續(xù)看下去。
1944年的空襲,毀壞了大多數(shù)的舊橋,格尼斯堡在河上重新建了5座橋,如圖:
B
現(xiàn)在請同學們再嘗試一下,在一次行走中跨過所有的5座橋而不重復經過任何一座橋。
學生思考。
師:同學們,這次行得通了吧?那么為什么呢?有沒有同學可以說一下他的想法?
其實,我們的歐拉大師經過研究大量類似的網絡,證明了這樣的事實(PPT演示):要走完一條路線而其中每一段行程只許經過一次,只有當奇數(shù)結點的數(shù)目是0或2時才是有可能的,在其他情況下,如果不走回頭路,就不能歷遍整個網絡。
他還發(fā)現(xiàn):如果有兩個奇結點,那么經過整個路線的形成必須從一個
奇結點開始,到另一個奇結點結束。
師:我們來看一下是不是這樣的?第一個圖奇結點的個數(shù)為3,第二個圖奇結點的個數(shù)減少到2個了,看來真的是這樣的。
現(xiàn)在請同學們自己在練習本上解決這個問題:(PPT演示)
下面是一幅農場的大門的'圖。如果筆不離紙,又不重復經過任一條線,有沒有可能畫成它?
學生思考討論。
師:我們看到它的奇結點個數(shù)為4,由歐拉的證明我們知道不能一筆畫成。
那如果農場主將門的形狀做成這樣呢?(PPT演示)
學生嘗試。
師:是不是可以啦,為什么呢?
生:奇結點個數(shù)為2.
師:這種不用走回頭路而歷遍整條線路的情況,不僅僅具有趣味性,在現(xiàn)實生活中具有很重要的實用性,比如,我們的郵遞員和煤氣抄表員,不走回頭路意味著可以節(jié)省很多寶貴的時間?磥恚瑪(shù)學并不像
某些時候想的那樣沒什么用處了吧?
下面我們繼續(xù)我們的奧秘之類吧。
今天我們班有同學生日嗎?如果你生日,爸爸媽媽給你買了一個正方形的蛋糕,你要把它切成不同形狀的平均大小的7塊,怎么切?能行嗎?嘗試一下。
其實很簡單,你只需要把正方形的周邊(即周長)分成7個等長,定出蛋糕的中心,從周邊劃分等長的標記切向中電,(如圖所示)即可。
為什么呢?這里我們用到三角形等高等底面積相等的性質。
吃完了蛋糕,我們來觀賞一下百合花。(PPT演示):
一個鄉(xiāng)村的池塘里種了美麗的百合花,百合花生長得很快,使它們覆蓋的面積每天增加一倍。30天后,長滿了整個池塘,那么池塘只被百合花覆蓋一半時是多少天呢?同學們,你知道嗎?
學生討論。
師:答案是29天,多么神奇,是吧?潛意識里我們很難接受答案就是29天,只與30天差一天。但用數(shù)學我們很容易很清楚地知道是29天,奧秘就在“它們覆蓋的面積每天增加一倍”這句話里面。你看,數(shù)學是多么聰慧、多么神奇的家伙!
其實,除了以上我們看到的一些有趣的數(shù)學影子外,我們的日常生
初中數(shù)學教案3
教學目標:
(一)知識與技能
理解單項式及單項式系數(shù)、次數(shù)的概念;能準確迅速地確定一個單項式的系數(shù)和次數(shù);會用含字母的式子表示實際問題中的數(shù)量關系。
(二)過程與方法
1.在經歷用字母表示數(shù)量關系的過程中,發(fā)展符號感;
2. 通過小組討論、合作學習等方式,經歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力
(三)情感態(tài)度價值觀
1.通過豐富多彩的現(xiàn)實情景,讓學生經歷從具體問題中抽象出數(shù)量關系,在解決問題中了解數(shù)學的價值,增長“用數(shù)學”的信心.
2.通過用含字母的式子描述現(xiàn)實世界中的數(shù)量關系,認識到它是解決實際問題的重要數(shù)學工具之一。
教學重、難點:
重點:單項式及單項式系數(shù)、次數(shù)的概念。
難點:單項式次數(shù)的概念;單項式的書寫格式及注意點。
教學方法:
引導——探究式
在感性材料的基礎上,學生自主探究現(xiàn)實情景中用字母表示數(shù)的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導學生共同抽象、概括單項式及相關的概念.
教具準備:
多媒體課件、小黑板.
教學過程:
一、 創(chuàng)設情境,引入新課
出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向學生介紹青藏鐵路所創(chuàng)造的歷史之最。
情境問題:
青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
設計意圖:從學生熟悉的情境出發(fā),創(chuàng)設情境,讓學生感受青藏鐵路的偉大成就,激發(fā)
愛國主義情感,得到一次情感教育。
解:根據(jù)路程、速度、時間之間的關系:路程=速度×時間
2小時行駛的路程是:100×2=200(千米)
3小時行駛的路程是:100×3=300(千米)
t小時行駛的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出現(xiàn)乘號,通常將乘號寫作“ · ”或省略不寫。
如:100×a可以寫成100a或100a。
代數(shù)式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數(shù)和表示數(shù)的字母連接起來的式子。
代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關系,本節(jié)我們就來學習最基本也是最重要的一類代數(shù)式整式。
設計意圖:從學生已有的數(shù)學經驗:路程=速度×時間出發(fā),建立新舊知識之間的聯(lián)系
讓學生歷一個從一般到特殊再到一般的認識過程,發(fā)展學生的認知觀念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。
1、邊長為a的正方體的表面積是__,體積是__.
2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。
3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。
4、數(shù)n的相反數(shù)是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它們有什么共同的特點?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
單項式:數(shù)與字母、字母與字母的乘積。
注意:單獨的一個數(shù)或字母也是單項式。
設計意圖:從熟悉的實際背景出發(fā),充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,獲得數(shù)學猜想和數(shù)學經驗,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性。
火眼金睛
下列各代數(shù)式中哪些是單項式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)
(6)
(7)3a+2b (8)xy2
設計意圖:加強學生對不同形式的單項式的直觀認識。
解剖單項式
系數(shù):單項式中的數(shù)字因數(shù)。
如:-3x的系數(shù)是 ,-ab的系數(shù)是 , 的`系數(shù)是 。
次數(shù):一個單項式中的所有字母的指數(shù)的和。
如:-3x的次數(shù)是 ,ab的次數(shù)是 。
小試身手
單項式 2a 2 -1.2h xy2 -t2 -32x2y
系數(shù)
次數(shù)
設計意圖:了解學生對單項式系數(shù)、次數(shù)的概念是否理解,找出存在的問題,從而進一步鞏固概念。
單項式的注意點:
(1)數(shù)與字母相乘時,數(shù)應寫在字母的___,且乘號可_________;
(2)帶分數(shù)作為系數(shù)時,應改寫成_______的形式;
(3)式子中若出現(xiàn)相除時,應把除號寫成____的形式;
(4)把“1”或“-1”作為項的系數(shù)時,“1”可以__不寫。
行家看門道
、1x ②-1x
、踑×3 ④a÷2
⑤ ⑥m的系數(shù)為1,次數(shù)為0
、 的系數(shù)為2,次數(shù)為2
設計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學生進一步明確注意點。
三、例題講解,鞏固新知
例1:用單項式填空,并指出它們的系數(shù)和次數(shù):
(1)每包書有12冊,n包書有 冊;
(2)底邊長為a,高為h的三角形的面積 ;
(3)一個長方體的長和寬都是a,高是h,它的體積是 ;
(4)一臺電視機原價a元,現(xiàn)按原價的9折出售,這臺電視機現(xiàn)在的售價
為 元;
(5)一個長方形的長0.9,寬是a,這個長方形的面積是 .
解:(1)12n,它的系數(shù)是12,次數(shù)是1
(2) ,它的系數(shù)是 , 次數(shù)是2;
(3)a2h,它的系數(shù)是1,次數(shù)是3;
(4)0.9a,它的系數(shù)是0.9,次數(shù)是1;
(5)0.9a,它的系數(shù)是0.9,次數(shù)是1。
設計意圖:學生能用單項式表示簡單的實際問題中的數(shù)量關系,并進一步鞏固單項式的系數(shù)、次數(shù)的概念。
試一試
你還能賦予0.9a一個含義嗎?
設計意圖:同一個式子可以表示不同的含義,通過這個例子讓學生進一步體會式子更具有一般性,而且發(fā)散學生思維。
大膽嘗試
寫出一個單項式,使它的系數(shù)是2,次數(shù)是3.
設計意圖:充分發(fā)揮學生的想象力,讓每一個學生都有獲得成功的體驗,為不同程度的學生一個展示自我的機會,激發(fā)他們的學習興趣。
四、拓展提高
嘗試應用
用單項式填空,并指出它們的系數(shù)和次數(shù):
(1)全校學生總數(shù)是x,其中女生占總數(shù)48%,則女生人數(shù)是 ,男生人數(shù)是 ;
(2)一輛長途汽車從楊柳村出發(fā),3小時后到達相距s千米的溪河鎮(zhèn),這輛長途汽車的平均速度是 ;
(3)產量由m千克增長10%,就達到 千克;
設計意圖:讓學生感受單項式在實際生活中的應用,進一步掌握單項式及單項式系數(shù)、次數(shù)的概念。
能力提升
1、已知-xay是關于x、y的三次單項式,那么a= ,b= .
2、若-ax2yb+1是關于x、y的五次單項式,且系數(shù)為-3,則a= ,b= .
設計意圖:照顧學有余力的學生,拓展學生思維,讓學生體會跳一跳、摘桃子的樂趣。
五、小結:
本節(jié)課你感受到了嗎?
生活中處處有數(shù)學
本節(jié)課我們學了什么?你能說說你的收獲嗎?
1、單項式的概念: 數(shù)與字母、字母與字母的乘積。
2、單項式的系數(shù)、次數(shù)的概念。
系數(shù):單項中的數(shù)字因數(shù);
次數(shù):單項中所有字母的指數(shù)和。
3、會用單項式表示實際問題中的數(shù)量關系,注意列式時式子要規(guī)范書寫。
設計意圖:通過回顧和反思,讓學生看到自己的進步,激勵學生,使學生相信自己在今后的學習中不斷進步,不斷積累數(shù)學活動經驗,促進學生形成良好的心理品質。
結束寄語
悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發(fā)現(xiàn)!
設計意圖:這是對學生的激勵也是對學生的一種期盼,可以增進師生間的情感交流。
六、板書設計
2.1 整式
單項式概念 探究 例1 多
單項式的系數(shù)概念 觀察交流 嘗試應用 媒
單項式的次數(shù)概念 能力提升 體
七、作業(yè):
1.作業(yè)本(必做)。
2. 請下面圖片設計一個故事情境,要求其中包含的數(shù)量關系能夠用單項式表示,并且指出它們的系數(shù)和次數(shù)(選做)。
設計意圖:布置分層作業(yè),既讓學生掌握基礎知識,又使學有余力的學生有所提高。讓學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,活躍學生思維,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的競爭意識。
八、設計理念:
本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將提供大量感性材料,以啟發(fā)引導為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,同時注重培養(yǎng)學生由感性認識上升到理性認識,為進一步學習同類項打下堅實的基礎。
初中數(shù)學教案4
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的`方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習
1、教科書第3頁練習1、2。
2、補充練習:檢驗下列各括號內的數(shù)是不是它前面方程的解。
。1)x-3(x+2)=6+x(x=3,x=-4)
。2)2y(y-1)=3(y=-1,y=2)
。3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結。本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業(yè)。教科書第3頁,習題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學目的
通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節(jié)課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。
測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質量相等。
如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。
初中數(shù)學教案5
教學目標
1筆寡生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值;
2迸嘌學生準確地運算能力,并適當?shù)貪B透特殊與一般的辨證關系的思想。
教學重點和難點
重點和難點:正確地求出代數(shù)式的值
課堂教學過程設計
一、從學生原有的認識結構提出問題
1庇么數(shù)式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;
(3)a與b的和的50%
2庇糜镅孕鶚齟數(shù)式2n+10的意義
3倍雜詰2題中的代數(shù)式2n+10,可否編成一道實際問題呢?(在學生回答的基礎上,教師打投影)
某學校為了開展體育活動,要添置一批排球,每班配2個,學校另外留10個,如果這個學校共有n個班,總共需多少個排球?
若學校有15個班(即n=15),則添置排球總數(shù)為多少個?若有20個班呢?
最后,教師根據(jù)學生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當班數(shù)n取不同的數(shù)值時,代數(shù)式2n+10的計算結果也不同,顯然,當n=15時,代數(shù)式的值是40;當n=20時,代數(shù)式的值是50蔽頤墻上面計算的結果40和50,稱為代數(shù)式2n+10當n=15和n=20時的值閉餼褪潛窘誑撾頤墻要學習研究的內容
二、師生共同研究代數(shù)式的值的意義
1庇檬值代替代數(shù)式里的字母,按代數(shù)式指明的運算,計算后所得的結果,叫做代數(shù)式的值
2苯岷仙鮮隼題,提出如下幾個問題:
(1)求代數(shù)式2x+10的值,必須給出什么條件?
(2)代數(shù)式的值是由什么值的確定而確定的?
當教師引導學生說出:“代數(shù)式的值是由代數(shù)式里字母的取值的確定而確定的”之后,可用圖示幫助學生加深印象
然后,教師指出:只要代數(shù)式里的字母給定一個確定的值,代數(shù)式就有唯一確定的值與它對應
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應注意什么呢?
下面教師結合例題來引導學生歸納,概括出上述問題的答案(教師板書例題時,應注意格式規(guī)范化)
例1當x=7,y=4,z=0時,求代數(shù)式x(2x-y+3z)的值
解:當x=7,y=4,z=0時,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代數(shù)式中省略乘號,代入后需添上乘號
例2根據(jù)下面a,b的值,求代數(shù)式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)當a=4,b=12時,
a2-=42-=16-3=13;
(2)當a=1,b=1時,
a2-=-=
注意(1)如果字母取值是分數(shù),作乘方運算時要加括號;
(2)注意書寫格式,“當……時”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應當使代數(shù)式或代數(shù)式所表示的'數(shù)量關系失去實際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個數(shù),n不能取分數(shù)最后,請學生總結出求代數(shù)值的步驟:①代入數(shù)值②計算結果
三、課堂練習
1(1)當x=2時,求代數(shù)式x2-1的值;
(2)當x=,y=時,求代數(shù)式x(x-y)的值
2鋇盿=,b=時,求下列代數(shù)式的值:
(1)(a+b)2;(2)(a-b)2
3鋇眡=5,y=3時,求代數(shù)式的值
答案:1.(1)3;(2);2.(1);(2);3..
四、師生共同小結
首先,請學生回答下面問題:
1北窘誑窩習了哪些內容?
2鼻蟠數(shù)式的值應分哪幾步?
3痹“代入”這一步應注意什么”
其次,結合學生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母按照代數(shù)式的運算順序,直接計算后所得的結果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.
五、作業(yè)
當a=2,b=1,c=3時,求下列代數(shù)式的值:(1)c-(c-a)(c-b);
今天的內容就介紹到這里了。
初中數(shù)學教案6
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
。ㄒ唬┊嬈叫芯
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據(jù)此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
、谶^點C畫直線a的平行線,能畫 條;
、勰惝嫷闹本有什么位置關系? 。
、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
。ㄒ唬┻x擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為( )
A.0個 B.1個 C.2個 D.3個
。ǘ┨羁疹}:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的`位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
。2)L1與L2有且只有一個公共點,則L1與L2 ;
。3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初中數(shù)學教案7
問題描述:
初中數(shù)學教學案例
初中的,隨便那個年級.20xx字.案例和反思
1個回答 分類:數(shù)學 20xx-11-30
問題解答:
我來補答
2.3 平行線的性質
一、教材分析:
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節(jié) 平行線的性質,它是平行線及直線平行的繼續(xù),是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.
二、教學目標:
知識與技能:掌握平行線的性質,能應用性質解決相關問題.
數(shù)學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質,使學生形成數(shù)形結合的數(shù)學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神.
情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數(shù)學的熱情和勇于探索、鍥而不舍的精神.
三、教學重、難點:
重點:平行線的性質
難點:“性質1”的`探究過程
四、教學方法:
“引導發(fā)現(xiàn)法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器.
六、教學媒體:大屏幕、實物投影
七、教學過程:
。ㄒ唬﹦(chuàng)設情境,設疑激思:
1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質.
。ǘ⿺(shù)形結合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數(shù)
數(shù)量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
。ㄈ┮晁伎,培養(yǎng)創(chuàng)新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示.
教師活動:引導學生說理.
因為a‖b 因為a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質2 兩條直線被第三條直線所截,內錯角相等.
。▋芍本平行,內錯角相等)
性質3 兩條直線被第三條直線所截,同旁內角互補.
(兩直線平行,同旁內角互補)
(四)實際應用,優(yōu)勢互補
1.(搶答)
。1)如圖,平行線AB、CD被直線AE所截
、偃簟1 = 110°,則∠2 = °.理由:.
、谌簟1 = 110°,則∠3 = °.理由:.
、廴簟1 = 110°,則∠4 = °.理由:.
。2)如圖,由AB‖CD,可得( )
。ˋ)∠1=∠2 (B)∠2=∠3
。–)∠1=∠4 (D)∠3=∠4
。3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
。4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2= .
學生提問,并找出回答問題的同學.
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數(shù)學問題;
3.用數(shù)形結合的方法來解決問題.
。┳鳂I(yè) 第69頁 2、4、7.
八、教學反思:
、俳痰霓D變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發(fā)現(xiàn)結論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關系,激發(fā)學生自覺地探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣.
、趯W的轉變:學生的角色從學會轉變?yōu)闀䦟W.本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.
③課堂氛圍的轉變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值.
初中數(shù)學教案8
教學目標
1.經歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。
2.通過驗證過程中數(shù)與形的結合,體會數(shù)形結合的思想以及數(shù)學知識之間內在聯(lián)系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經驗。
4.通過獲得成功的體驗和克服困難的經歷,增進數(shù)學學習的信心。通過豐富有趣拼的圖活動增強對數(shù)學學習的.興趣。
重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。
2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經驗。
難點利用數(shù)形結合的方法驗證公式
教學方法動手操作,合作探究課型新授課教具投影儀
教師活動學生活動
情景設置:
你已知道的關于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關公式
提問:還能通過怎樣拼圖來解決以下問題
。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應的等式;
。2)任意寫出一個關于a、b的二次三項式,如a2+4ab+3b2
試用拼一個長方形的方法,把這個二次三項式因式分解。
這個問題要給予學生充足的時間和空間進行討論和拼圖,教師在這要引導適度,不要限制學生思維,同時鼓勵學生在拼圖過程中進行交流合作
了解學生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據(jù)不同學生的不同狀況給予適當?shù)囊龑,引導學生整理結論。
小結:
從這節(jié)課中你有哪些收獲?
。ń處煈o予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結。)
學生回答
a(b+c+d)=ab+ac+ad
。╝+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
學生拿出準備好的硬紙板制作
給學生充分的時間進行拼圖、思考、交流經驗,對于有困難的學生教師要給予適當引導。
作業(yè)第95頁第3題
板書設計
復習例1板演
………………
………………
……例2……
………………
………………
教學后記
初中數(shù)學教案9
今天小編為大家精心整理了一篇有關初中數(shù)學教案之公式的相關內容,以供大家閱讀!
教學設計示例一——公式
教學目標
1.了解公式的意義,使學生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學生觀察、分析及概括的能力;
3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議
一、教學重點、難點
重點:通過具體例子了解公式、應用公式.
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設計示例二——公式
一、教學目標
(一)知識教學點
1.使學生能利用公式解決簡單的實際問題.
2.使學生理解公式與代數(shù)式的關系.
(二)能力訓練點
1.利用數(shù)學公式解決實際問題的能力.
2.利用已知的公式推導新公式的能力.
。ㄈ┑掠凉B透點
數(shù)學來源于生產實踐,又反過來服務于生產實踐.
(四)美育滲透點
數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的簡潔美.
二、學法引導
1.數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的`公式為基礎、突破難點
2.學生學法:觀察分析推導計算
三、重點、難點、疑點及解決辦法
1.重點:利用舊公式推導出新的圖形的計算公式.
2.難點:同重點.
3.疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差.
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片。
六、師生互動活動設計
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.
七、教學步驟
(一)創(chuàng)設情景,復習引入
師:同學們已經知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏.
在學生說出幾個公式后,師提出本節(jié)課我們應在小學學習的基礎上,研究如何運用公式解決實際問題.
板書:公式
師:小學里學過哪些面積公式?
板書:S=ah
。ǔ鍪就队1)。解釋三角形,梯形面積公式
【教法說明】讓學生感知用割補法求圖形的面積。
。ǘ┨剿髑笾v授新課
師:下面利用面積公式進行有關計算
。ǔ鍪就队2)
例1如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積S。
師生共同分析:1.根據(jù)梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現(xiàn)在知道嗎?
2.題中“M”是什么意思?(師補充說明厘米可寫作cm,千米寫作km,平方厘米寫作等)
學生口述解題過程,教師予以指正并指出,強調解題的規(guī)范性.
【教法說明】1.通過分析,引導學生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量.2.用公式計算時,要先寫出公式,然后代入計算,養(yǎng)成良好的解題習慣.
。ǔ鍪就队3)
例2如圖是一個環(huán)形,外圓半徑,內圓半徑求這個環(huán)形的面積
學生討論:1.環(huán)形是怎樣形成的.2.如何求環(huán)形的面積討論后請學生板演,其他同學做在練習本上,教育巡回指導.
評講時注意1.如果有學生作了簡便計算,則給予表揚和鼓勵:如果沒有學生這樣計算,則啟發(fā)學生這樣計算.
2.本題實際上是由圓的面積公式推導出環(huán)形面積公式.
3.進一步強調解題的規(guī)范性
教法說明,讓學生做例題,學生能自己評判對與錯,優(yōu)與劣,是獲取知識的一個很好的途徑.
測試反饋,鞏固練習
。ǔ鍪就队4)
1.計算底,高的三角形面積
2.已知長方形的長是寬的1.6倍,如果用a表示寬,那么這個長方形的周長是多少?當時,求t
3.已知圓的半徑,,求圓的周長C和面積S
4.從A地到B地有20千米上坡路和30千米下坡路,某車上坡時每小時走千米,下坡時每小時走千米。
(1)求A地到B地所用的時間公式。
。2)若千米/時,千米/時,求從A地到B地所用的時間。
學生活動:分兩次完成,每次兩題,兩人板演,其他同學在練習本上完成,做好后同桌交換評判,第一次可請兩位基礎較差的同學板演,第二次請中等層次的學生板演.
【教法說明】面向全體,分層教學,能照顧兩極,使所有的同學有所發(fā)展.
師:公式本身是用等號聯(lián)接起來的代數(shù)式,許多公式在實際中都有重要的用處,可以用公式直接計算還可以利用公式推導出新的公式.
八、隨堂練習
。ㄒ唬┨羁
1.圓的半徑為R,它的面積________,周長_____________
2.平行四邊形的底邊長是,高是,它的面積_____________;如果,,那么_________
3.圓錐的底面半徑為,高是,那么它的體積__________如果,,那么_________
。ǘ┮环N塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積V,如果,,,V是多少?
九、布置作業(yè)
(一)必做題課本第xx頁x、x、x第xx頁x組x
(二)選做題課本第xx頁xx組x
初中數(shù)學教案10
生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。
側棱:相鄰兩個側面的交線。棱柱的所有側棱長都相等。
底面:棱柱有上、下兩個底面,形狀相同。
側面:棱柱的側面都是平行四邊形。
立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。
棱柱:分為直棱柱、斜棱柱。直棱柱的側面是長方形。
特殊的`四棱柱:長方體、正方體。正方體的每個面都是正方形。
圓柱:上、下兩個面都是圓形,側面展開圖是長方形。
圓錐:底面是圓形,側面展開圖是扇形。
截面:用一個平面去截一個幾何體,截出的面。
球:用一個平面去截,截面圖形是圓形。
正方體的截面:可以是正方形、長方形、梯形、三角形。
圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。
展開與折疊:兩個面出現(xiàn)在同一位置的展開圖形,是不可折疊的。
從三個方向看物體的形狀:正面看(主視圖)、左面看(側視圖)、上面看(俯視圖)
初中數(shù)學教案11
一、指導思想
教育教學工作是一個頭緒眾多的系統(tǒng)工程,在紛繁的頭緒中需要各項工作有序進展,尤為重要的是強化常規(guī),做好細節(jié),教學常規(guī)是對學校教學工作的基本要求,落實教學常規(guī)是學校教學工作得以正常有序開展的根本保證。只有搞好教學常規(guī)才有可能獲得成功的教育。教師教學水平的.高低體現(xiàn)于教學各個步驟的細節(jié)中,空洞地談教學能力是蒼白的,只有用教師的備課情況、講課細節(jié)、作業(yè)批改情況。教學常規(guī)培養(yǎng)著教師的基本功,決定著教師的教學能力,可以說教師的教學水平就是在這些常規(guī)細節(jié)中培養(yǎng)起來。
二、檢查反饋
本次檢查大多數(shù)教師都比較重視,檢查內容完整、全面。現(xiàn)將檢查情況總結如下教案方面的特點與不足。
特點:
1、絕大多數(shù)教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文等能突出對學科素養(yǎng)的高度關注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學的反思意識,反思深刻、務實、有針對性。
2、教學環(huán)節(jié)齊全,注重引語與小結,使教學設計前后呼應,環(huán)節(jié)完整。
3、注重選擇恰當?shù)慕虒W方法,注重在靈活多樣的教學方法中培養(yǎng)學生的合作意識和創(chuàng)新精神。
4、教案能體現(xiàn)多媒體教學手段,注重培養(yǎng)學生的探究精神和創(chuàng)新能力。
不足:
1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業(yè)方面的特點與不足
特點:
1、能按進度布置作業(yè),作業(yè)設置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的錯誤做法及糾正措施。
不足:
1、對于學生書寫的工整性,還需加強教育。
2、教師在批閱作業(yè)時,要稍細心些,發(fā)現(xiàn)問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。
初中數(shù)學教案12
知識技能目標
1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質;
2、利用反比例函數(shù)的圖象解決有關問題。
過程性目標
1、經歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質;
2、探索反比例函數(shù)的圖象的性質,體會用數(shù)形結合思想解數(shù)學問題。
教學過程
一、創(chuàng)設情境
上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。
學生討論、交流以下問題,并將討論、交流的結果回答問題。
1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內?由什么確定?
3、聯(lián)系一次函數(shù)的性質,你能否總結出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質:
。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
。2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
注
1、雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關于原點成中心對稱。
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實踐應用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經過的象限。
分析由于反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(1,—2)。
。1)求這個函數(shù)的解析式,并畫出圖象;
。2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;
(2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。
解(1)設:反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
。2)點A(—5,m)在反比例函數(shù)圖象上,所以,
點A的坐標為。
點A關于x軸的對稱點不在這個圖象上;
點A關于y軸的對稱點不在這個圖象上;
點A關于原點的對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù)。
。1)求m的值;
。2)它的圖象在第幾象限內?在各象限內,y隨x的'增大如何變化?
。3)當—3≤x≤時,求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
(2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。
(3)因為在第個象限內,y隨x的增大而增大,
所以當x=時,y最大值=;
當x=—3時,y最小值=。
所以當—3≤x≤時,此函數(shù)的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
。1)寫出用高表示長的函數(shù)關系式;
。2)寫出自變量x的取值范圍;
。3)畫出函數(shù)的圖象。
解(1)因為100=5xy,所以。
。2)x>0。
。3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內的一個分支。
四、交流反思
本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質:
。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
五、檢測反饋
1、在同一直角坐標系中畫出下列函數(shù)的圖象:
(1);(2)。
2、已知y是x的反比例函數(shù),且當x=3時,y=8,求:
。1)y和x的函數(shù)關系式;
。2)當時,y的值;
(3)當x取何值時,?
3、若反比例函數(shù)的圖象在所在象限內,y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經過點A(2,—m)和B(n,2n),求:
(1)m和n的值;
。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0
初中數(shù)學教案13
教學目的
1、使學生了解無理數(shù)和實數(shù)的概念,掌握實數(shù)的分類,會準確判斷一個數(shù)是有理數(shù)還是無理數(shù)。
2、使學生能了解實數(shù)絕對值的意義。
3、使學生能了解數(shù)軸上的點具有一一對應關系。
4、由實數(shù)的分類,滲透數(shù)學分類的思想。
5、由實數(shù)與數(shù)軸的一一對應,滲透數(shù)形結合的思想。
教學分析
重點:無理數(shù)及實數(shù)的概念。
難點:有理數(shù)與無理數(shù)的區(qū)別,點與數(shù)的一一對應。
教學過程
一、復習
1、什么叫有理數(shù)?
2、有理數(shù)可以如何分類?
。ò炊x分與按大小分。)
二、新授
1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。
判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。
2、實數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。
3、按課本中列表,將各數(shù)間的`聯(lián)系介紹一下。
除了按定義還能按大小寫出列表。
4、實數(shù)的相反數(shù):
5、實數(shù)的絕對值:
6、實數(shù)的運算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
。1)任何實數(shù)的偶次冪是正實數(shù)。( )
(2)在實數(shù)范圍內,若| x|=|y|則x=y。( )
。3)0是最小的實數(shù)。( )
(4)0是絕對值最小的實數(shù)。( )
解:略
三、練習
P148 練習:3、4、5、6。
四、小結
1、今天我們學習了實數(shù),請同學們首先要清楚,實數(shù)是如何定義的,它與有理數(shù)是怎樣的關系,二是對實數(shù)兩種不同的分類要清楚。
2、要對應有理數(shù)的相反數(shù)與絕對值定義及運算律和運算性質,來理解在實數(shù)中的運用。
五、作業(yè)
1、P150 習題A:3。
2、基礎訓練:同步練習1。
初中數(shù)學教案14
教學目標
。1)認知目標
理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關的實際問題。
(2)技能目標
經歷從分數(shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)學生類比的探究能力,加深對從特殊到一般數(shù)學的思想認識。
。3)情感態(tài)度與價值觀
教學中讓學生在主動探究,合作交流中滲透類比轉化的思想,使學生在學知識的同時感受探索的樂趣和成功的體驗。
教學重難點
重點:運用分式的乘除法法則進行運算。
難點:分子、分母為多項式的分式乘除運算。
教學過程
。ㄒ唬┨岢鰡栴},引入課題
俗話說:“好的開端是成功的一半”同樣,好的引入能激發(fā)學生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題:
問題1:求容積的高是,(引出分式乘法的學習需要)。
問題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學習需要)。
從實際出發(fā),引出分式的乘除的實在存在意義,讓學生感知學習分式的乘法和除法的實際需要,從而激發(fā)學生興趣和求知欲。
(二)類比聯(lián)想,探究新知
從學生熟悉的分數(shù)的乘除法出發(fā),引發(fā)學生的學習興趣。
解后總結概括:
(1)式是什么運算?依據(jù)是什么?
。2)式又是什么運算?依據(jù)是什么?能說出具體內容嗎?(如果有困難教師應給于引導,學生應該能說出依據(jù)的是:分數(shù)的`乘法和除法法則)教師加以肯定,并指出與分數(shù)的乘除法法則類似,引導學生類比分數(shù)的乘除法則,猜想出分式的乘除法則。
。ǚ质降某顺ǚ▌t)
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(三)例題分析,應用新知
師生活動:教師參與并指導,學生獨立思考,并嘗試完成例題。
P11的例1,在例題分析過程中,為了突出重點,應多次回顧分式的乘除法法則,使學生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和學生一起詳細分析,提醒學生關注易錯易漏的環(huán)節(jié),學會解題的方法。
。ㄋ模┚毩曥柟,培養(yǎng)能力
P13練習第2題的(1)、(3)、(4)與第3題的(2)。
師生活動:教師出示問題,學生獨立思考解答,并讓學生板演或投影展示學生的解題過程。
通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結合的原則。讓學生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結果。
。ㄎ澹┱n堂小結,回扣目標
引導學生自主進行課堂小結:
1、本節(jié)課我們學習了哪些知識?
2、在知識應用過程中需要注意什么?
3、你有什么收獲呢?
師生活動:學生反思,提出疑問,集體交流。
。┎贾米鳂I(yè)
教科書習題6.2第1、2(必做)練習冊P(選做),我設計了必做題和選做題,必做題是對本節(jié)課內容的一個反饋,選做題是對本節(jié)課知識的一個延伸。
板書設計
在本節(jié)課中我將采用提綱式的板書設計,因為提綱式—條理清楚、從屬關系分明,給人以清晰完整的印象,便于學生對教材內容和知識體系的理解和記憶。
初中數(shù)學教案15
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;
3.使學生初步理解數(shù)形結合的思想方法.
教學重點和難點
重點:初步理解數(shù)形結合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應關系.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容——.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的.不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數(shù)的點:
例2 指出上A,B,C,D,E各點分別表示什么數(shù).
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?
最后引導學生得出結論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關系,它揭示了數(shù)和形之間的內在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數(shù)的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
【初中數(shù)學教案】相關文章:
初中數(shù)學教案08-12
角初中數(shù)學教案12-30
人教版初中數(shù)學教案07-17
初中數(shù)學教案模板11-02
【熱門】初中數(shù)學教案11-18
【精】初中數(shù)學教案11-21
初中數(shù)學教案【精】11-19
初中數(shù)學教案【推薦】11-22
初中數(shù)學教案【熱門】11-20
【薦】初中數(shù)學教案11-26