- 相關(guān)推薦
初中數(shù)學《平方根》教案
作為一名專為他人授業(yè)解惑的人民教師,可能需要進行教案編寫工作,教案有助于順利而有效地開展教學活動。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編幫大家整理的初中數(shù)學《平方根》教案,歡迎閱讀與收藏。
一、教學目標
1.了解立方根和開立方的概念;
2.會用根號表示一個數(shù)的立方根,掌握開立方運算;
3.培養(yǎng)學生用類比的思想求立方根的運算能力;
4.由立方與立方根的教學,滲透數(shù)學的轉(zhuǎn)化思想;
5.通過立方根符號的引入體驗數(shù)學的簡潔美.
二、教學重點和難點
教學重點:立方根的概念與性質(zhì).
教學難點:會求某些數(shù)的立方根.
三、教學方法
啟發(fā)式,講練結(jié)合
四、教學手段
幻燈片.
五、教學過程
(一)復(fù)習提問
請同學們回憶一下,平方根我們是如何定義的?平方根有哪些性質(zhì)?
在同學們回答后,啟發(fā)學生是否可試著給數(shù)的立方根下個定義.
1.立方根的概念:
如果一個數(shù)的立方等于a,這個數(shù)就叫做a的立方根.(也稱數(shù)a的三次方根)
用數(shù)學式表示為:
若x3=a,則x叫做a的立方根,或稱x叫做a的三次方根.
2.立方根的表示方法:
類似于平方根德表示方法,數(shù)a的立方根我們用符號來表示.讀作“三次根號下a”,其中a叫做被開方數(shù),3叫做根指數(shù),注意,在前面我們平方根的表示方法說過當根指數(shù)為2時可以省略不寫,現(xiàn)在是立方根了,這個根指數(shù)3是絕對不可省的,否則就會與平方根混淆了,例如表示125的立方根,而則表示125的算術(shù)平方根.
練習:用根號表示下列各數(shù)的立方根:
3.開立方概念:
求一個數(shù)的立方根的運算,叫做開立方.
4.開立方運算與立方運算互為逆運算.
因此,我們可以根據(jù)立方運算來求一些數(shù)的立方根.
例1.求下列各數(shù)的立方根:
解:(1)∵(-2)3=-8,
(2)∵23=8,
(4)∵(0.6)3=0.216,
(5)∵03=0,
下面我們思考這樣一個問題:一個正數(shù)有幾個平方根?負數(shù)有沒有平方根?一個正數(shù)有幾個立方根?負數(shù)有沒有立方根?請學生來回答這個問題.由前面剛剛做過的題我們不難看出像8、0.126、103、這樣的正數(shù),有一個正的立方根;像-8、、這樣的負數(shù)有一個負的立方根;0的立方根是0.由此我們得了立方根的性質(zhì).
5.立方根的性質(zhì):
(1)正數(shù)有一個正的立方根.
(2)負數(shù)有一個負的立方根.
(3)0的立方根是0.
這里我們不妨與平方根的性質(zhì)做個比較,平方根中,正數(shù)有兩個平方根,它們互為相反數(shù),正數(shù)只有一個正的立方根;在平方根中負數(shù)是沒有平方根的,而負數(shù)有一個負的立方根;平方根與立方根唯一相同之處是0的平方根,立方根都是它本身.
例2.求下列各式的值:
解:(1)∵33=27,
(2)∵(-3)3=-27,
(5)∵(102)3=106,
(6)∵(103)3=109,
例3.解方程:
(1)x3=0.125;(2)3(x-4)3-1536=0.
解:(1)x3=0.125
x=0.5.
(2)3(x-4)3-1536=0(此題可由學生先做,教師糾正錯誤)
3(x-4)3=1536
(x-4)3=512
x-4=8
x=12.
盡管我們學習了立方根,而我們也只能由立方根的定義求解x3=a(a為常數(shù))這一類型的
簡單的三次方程,所以像第(2)小題,我們要把(x-4)看成一個整體,依然轉(zhuǎn)化成為x3=a的形式,再由立方根定義去解.
填空練習:
(1)1的平方根是____;立方根為____;算術(shù)平方根為____.
(2)平方根是它本身的數(shù)是____.
(3)立方根是其本身的數(shù)是____.
(4)算術(shù)平方根是其本身的數(shù)是________.
(5)的立方根為________.
(6)的平方根為________.
(7)的立方根為________.
(8)一個自然數(shù)的算術(shù)平方根是a,那么與這個自然數(shù)相鄰的下一個自然數(shù)的平方根是____________;立方根是____________.
解:(1)±1;1;1.
(2)0.(此題學生容易把1也算進去,注意糾正他們的錯誤.)
(3)±1和0.(由此題,再復(fù)習一道立方根的性質(zhì).)
(4)0,1.(此題有學生可能會忘掉0.)
(5)-2(此題學生易得出-4的答案,應(yīng)引導學生將翻譯為-8,在求立方根,也有學生將看成得到,講解時注意)
(6)(此題首先讓學生把計算出來,再求平方根,而且平方根有兩個)
(7)-2.
(8),(此題引導學生先根據(jù)算術(shù)平方根來表示被開方數(shù)為a2,再表示相鄰的下一個自然數(shù)為a2+1,注意表示其平方根時有兩個值.)
六、總結(jié)
今天我們主要學習了立方根的概念和性質(zhì),一定要與平方根的概念和性質(zhì)相對比去理解.平方根與立方根是今后我們學習中經(jīng)常會用到的兩個非常重要的概念,希望同學們能夠熟練地掌握它,尤其是它們之間的聯(lián)系與區(qū)別.
七、作業(yè)
教材P.141練習1、2、4.
八、板書設(shè)計
探究活動
立方根近似值的求法
當立方根是一位整數(shù)時,很容易求出這個立方根;但當立方根是兩位或兩位以上的整數(shù)時,也能容易地求出嗎?例如求140608的立方根,怎樣求容易?
下面就介紹它的巧妙求法.
先用前三位數(shù)140來確定立方根的十位數(shù).因為53<140<63,所以十位數(shù)是5,而不是6.再用最后一位數(shù)8來確定立方根的個位數(shù).因為23=8,所以個位數(shù)是2.就是說,140608的立方根是52.確定立方根的個位數(shù)時要注意下面規(guī)律:我們知道:13=1,43=64,53=125,63=216,93=729,就是說當被開方數(shù)的末位數(shù)是1、4、5、6、9時,立方根的個位數(shù)就等于它本身(1、4、5、6、9);
因為23=8,83=512,就是說當被開方數(shù)的末位數(shù)是8和2時,立方根的個位數(shù)就分別是2和8,叫做2與8互換原則;同樣還有3與7互換原則(被開方數(shù)的末位數(shù)分別是3和7,立方根的個位數(shù)就分別是7和3).
一般地,如果103
21952,50653,79507,287496,970299。
【初中數(shù)學《平方根》教案】相關(guān)文章:
《平方根》教案03-09
初中數(shù)學 教案02-24
數(shù)學初中教案11-06
初中數(shù)學圓教案04-17
初中數(shù)學優(yōu)秀教案10-26
初中數(shù)學命題教案02-23
初中數(shù)學矩形教案12-30
初中數(shù)學實數(shù)教案01-06