午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

推薦文檔列表

數(shù)學(xué)教案-切線的判定和性質(zhì)

時間:2021-09-29 18:46:49 初中數(shù)學(xué)教案 我要投稿

數(shù)學(xué)教案-切線的判定和性質(zhì)

切線的判定和性質(zhì)(一)

數(shù)學(xué)教案-切線的判定和性質(zhì)

教學(xué)目標(biāo) :

1、使學(xué)生深刻理解切線的判定定理,并能初步運用它解決有關(guān)問題;

2、通過判定定理和切線判定方法的學(xué)習(xí),培養(yǎng)學(xué)生觀察、分析、歸納問題的能力;

3、通過學(xué)生自己實踐發(fā)現(xiàn)定理,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性.

教學(xué)重點:切線的判定定理和切線判定的方法;

教學(xué)難點 :切線判定定理中所闡述的由位置來判定直線是圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時掌握不好并極容易忽視.

教學(xué)過程 設(shè)計

 

(一)復(fù)習(xí)、發(fā)現(xiàn)問題

1.直線與圓的三種位置關(guān)系

在圖中,圖(1)、圖(2)、圖(3)中的直線l和⊙O是什么關(guān)系?

 

2、觀察、提出問題、分析發(fā)現(xiàn)(教師引導(dǎo))

圖(2)中直線l是⊙O的切線,怎樣判定?根據(jù)切線的定義可以判定一條直線是不是圓的切線,但有時使用定義判定很不方便.我們從另一個側(cè)面去觀察,那就是直線和圓的位置怎樣時,直線也是圓的切線呢?

如圖,直線l到圓心O的距離OA等于圓O的半徑,直線l是⊙O的切線.這時我們來觀察直線l與⊙O的位置.

發(fā)現(xiàn):(1)直線l經(jīng)過半徑OC的外端點C;(2)直線l垂直于半徑0C.這樣我們就得到了從位置上來判定直線是圓的切線的方法——切線的判定定理.

(二)切線的判定定理:

1、切線的判定定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

2、對定理的理解:

引導(dǎo)學(xué)生理解:①經(jīng)過半徑外端;②垂直于這條半徑.

請學(xué)生思考:定理中的兩個條件缺少一個行不行?定理中的兩個條件缺一不可.

 

圖(1)中直線了l經(jīng)過半徑外端,但不與半徑垂直;圖(2)(3)中直線l與半徑垂直,但不經(jīng)過半徑外端.

從以上兩個反例可以看出,只滿足其中一個條件的直線不是圓的切線.

(三)切線的判定方法

教師組織學(xué)生歸納.切線的判定方法有三種:

①直線與圓有唯一公共點;②直線到圓心的距離等于該圓的半徑;③切線的判定定理.

(四)應(yīng)用定理,強化訓(xùn)練

例1已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB.

求證:直線AB是⊙O的切線.

分析:欲證AB是⊙O的切線.由于AB過圓上點C,若連結(jié)OC,則AB過半徑OC的外端,只需證明OC⊥OB。

證明:連結(jié)0C

∵0A=0B,CA=CB,”

∴0C是等腰三角形0AB底邊AB上的中線.

∴AB⊥OC.

直線AB經(jīng)過半徑0C的外端C,并且垂直于半徑0C,所以AB是⊙O的切線.

練習(xí)1判斷下列命題是否正確.

(1)經(jīng)過半徑外端的直線是圓的切線.

(2)垂直于半徑的直線是圓的切線.

(3)過直徑的外端并且垂直于這條直徑的直線是圓的切線.

(4)和圓有一個公共點的直線是圓的切線.

(5)以等腰三角形的頂點為圓心,底邊上的高為半徑的圓與底邊相切.

采取學(xué)生搶答的形式進(jìn)行,并要求說明理由,

練習(xí)P106,1、2

目的:使學(xué)生初步會應(yīng)用切線的判定定理,對定理加深理解)

(五)小結(jié)

1、知識:切線的判定定理.著重分析了定理成立的條件,在應(yīng)用定理時,注重兩個條件缺一不可.

2、方法:判定一條直線是圓的切線的三種方法:

(1)根據(jù)切線定義判定.即與圓有唯一公共點的直線是圓的切線。

(2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓的切線.

(3)根據(jù)切線的判定定理來判定.

其中(2)和(3)本質(zhì)相同,只是表達(dá)形式不同.解題時,靈活選用其中之一.

3、能力:初步會應(yīng)用切線的判定定理.

(六)作業(yè) P115中2、4、5;P117中B組1.

切線的判定和性質(zhì)(二)

教學(xué)目標(biāo) :

1、使學(xué)生理解切線的性質(zhì)定理及推論;

2、通過對圓的切線位置關(guān)系的觀察,培養(yǎng)學(xué)生能從幾何圖形的直觀位置歸納出幾何性質(zhì)的能力;

教學(xué)重點:切線的性質(zhì)定理和推論1、推論2.

教學(xué)難點 :利用“反證法”來證明切線的性質(zhì)定理.

教學(xué)設(shè)計:

 

(一)基本性質(zhì)

1、觀察:(組織學(xué)生,使學(xué)生從感性認(rèn)識到理性認(rèn)識)

2、歸納:(引導(dǎo)學(xué)生完成)

(1)切線和圓有唯一公共點;(切線的定義)

(2)切線和圓心的距離等于圓的半徑;

猜想:圓的切線垂直于經(jīng)過切點的半徑.

引導(dǎo)學(xué)生應(yīng)用“反證法”證明.分三步:

(1)假設(shè)切線AT不垂直于過切點的半徑OA,

(2)同時作一條AT的垂線OM.通過證明得到矛盾,OM<OA這條半徑.則有直線和圓的位置關(guān)系中的數(shù)量關(guān)系,得AT和⊙O相交與題設(shè)相矛盾.

(3)承認(rèn)所要的結(jié)論AT⊥AO.

切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑.

指出:定理中題設(shè)和結(jié)論中涉及到的三個要點:切線、切點、垂直.

引導(dǎo)學(xué)生發(fā)現(xiàn):

推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點.

推論2:經(jīng)過切點且垂于切線的直線必經(jīng)過圓心.

引導(dǎo)學(xué)生分析性質(zhì)定理及兩個推論的條件和結(jié)論問的關(guān)系,總結(jié)出如下結(jié)論:

如果一條直線具備下列三個條件中的任意兩個,就可推出第三個.

(1)垂直于切線;

(2)過切點;

(3)過圓心.

(二)歸納切線的性質(zhì)

(1)切線和圓有唯一公共點;(切線的定義)

(2)切線和圓心的距離等于圓的半徑;(判定方法(2)的逆命題)

(3)切線垂直于過切點的半徑;(切線的性質(zhì)定理)

(4)經(jīng)過圓心垂直于切線的直線必過切點;(推論1)

(5)經(jīng)過切點垂直于切線的直線必過圓心.(推論2)

(三)應(yīng)用舉例,強化訓(xùn)練.

例1、如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D.

求證:AC平分∠DAB.

引導(dǎo)學(xué)生分析:條件CD是⊙O的切線,可得什么結(jié)論;由AD⊥CD,又可得什么.

證明:連結(jié)OC.

∴AC平分∠DAB.

例2、求證:如果圓的兩條切線互相平行,則連結(jié)兩個切點的線段是直徑。

已知:AB、CD是⊙O的兩條切線,E、F為切點,且AB∥CD

求證:連結(jié)E、F的線段是直徑。

證明:連結(jié)EO并延長

∵AB切⊙O于E,∴OE⊥AB,

∵AB∥CD,∴OE⊥CD.

∵CD是⊙O切線,F(xiàn)為切點,∴OE必過切點F

∴EF為⊙O直徑

強化訓(xùn)練:P109,1

3、求證:經(jīng)過直徑兩端點的切線互相平行。

已知:AB為⊙O直徑,MN、CD為⊙O切線,切點為A、B

求證:MN∥CD

證明:∵M(jìn)N切⊙O于A,AB為⊙O直徑

∴MN⊥AB

∵CD切⊙O于B,B為半徑外端

∴CD⊥AB,

∴MN∥CD.

(四)小結(jié)

1、知識:切線的性質(zhì):

(1)切線和圓有唯一公共點;(切線的定義)

(2)切線和圓心的距離等于圓的半徑;(判定方法(2)的逆命題)

(3)切線垂直于過切點的半徑;(切線的性質(zhì)定理)

(4)經(jīng)過圓心垂直于切線的直線必過切點;(推論1)

(5)經(jīng)過切點垂直于切線的直線必過圓心.(推論2)

2、能力和方法:

凡是題目中給出切線的切點,往往“連結(jié)”過切點的半徑.從而運用切線的性質(zhì)定理,產(chǎn)生垂直的位置關(guān)系.

(五)作業(yè) 教材P109練習(xí)2;教材P116中7.

切線的判定和性質(zhì)(三)

教學(xué)目標(biāo) :

1、使學(xué)生學(xué)能靈活運用切線的判定方法和切線的性質(zhì)證明問題;

2、掌握運用切線的性質(zhì)和切線的判定的有關(guān)問題中輔助線引法的基本規(guī)律;

3、通過對切線的綜合型例題分析和論證,激發(fā)學(xué)生的思維.

教學(xué)重點:對切線的判定方法及其性質(zhì)的準(zhǔn)確、熟煉、靈活地運用.

教學(xué)難點 :綜合型例題分析和論證的思維過程.

教學(xué)設(shè)計:

(一)復(fù)習(xí)與歸納

1、切線的判定

切線的判定方法有三種:

①直線與圓有唯一公共點;

②直線到圓心的距離等于該圓的半徑;

③切線的判定定理.即經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

2、切線的性質(zhì):

(1)切線和圓有唯一公共點;(切線的定義)

(2)切線和圓心的距離等于圓的半徑;(判定方法(2)的逆命題)

(3)切線垂直于過切點的半徑;(切線的性質(zhì)定理)

(4)經(jīng)過圓心垂直于切線的直線必過切點;(推論1)

(5)經(jīng)過切點垂直于切線的直線必過圓心.(推論2)

(二)靈活應(yīng)用

例1(P108例3)、已知AB是⊙O的直徑,BC是⊙O的切線,切點為B,OC平行于弦AD.求證:DC是⊙O的切線.

證明:連結(jié)OD.

∵OA=OD,∴∠1=∠2,

∵AD∥OC,∴∠1=∠3、∠2=∠4

∴∠3=∠4

在△OBC和△ODC中,

OB=OD,∠3=∠4,OC=OC,

∴△OBC≌△ODC,∴∠OBC=∠ODC.

∵BC是⊙O的切線,∴∠OBC=90°,∴∠ODC=90°.

∴DC是⊙O的切線.

例2(P110例4)、如圖,在以O(shè)為圓心的兩個同心圓中,大圓的弦AB和CD相等,且AB與小圓相切于點E,求證:CD與小圓相切.

證明:連結(jié)OE,過O作OF⊥CD,垂足為F.

∵AB與小圓O切于點點E,∴OE⊥AB.

又∵AB=CD,

∴OF=OE,又OF⊥CD,

∴CD與小圓O相切.

學(xué)生歸納:(1)證明切線的兩個常見方法(①連半徑證垂直;②作垂直證半徑.);

(2)“連結(jié)”過切點的半徑,產(chǎn)生垂直的位置關(guān)系.

例3、已知:AB是半⊙O直徑,CD⊥AB于D,EC是切線,E為切點

求證:CE=CF

證明:連結(jié)OE

∵BE=BO∴∠3=∠B

∵CE切⊙O于E

∴OE⊥CE∠2+∠3=90°

∵CD⊥AB∴∠4+∠B=90°

∴∠2=∠4

∵∠1=∠4∴∠1=∠2

∴CE=CF

以上例題讓學(xué)生自主分析、論證,教師指導(dǎo)書寫規(guī)范,觀察學(xué)生推理的嚴(yán)密性和學(xué)生共同存在的問題,及時解決.

鞏固練習(xí):P111練習(xí)1、2.

(三)小結(jié):

1、知識:(指導(dǎo)學(xué)生歸納)切線的判定方法和切線的性質(zhì)

2、能力:①靈活運用切線的判定方法和切線的性質(zhì)證明問題;②作輔助線的能力和技巧.

(四)作業(yè) :教材P115,1(1)、2、3.

探究活動

問題:(北京西城區(qū),2002)已知:AB為⊙O的直徑,P為AB延長線上的一個動點,過點P作⊙O的切線,設(shè)切點為C.

(1)當(dāng)點P在AB延長線上的位置如圖1所示時,連結(jié)AC,作∠APC的平分線,交AC于點D,請你測量出∠CDP的度數(shù);

(2)當(dāng)點P在AB延長線上的位置如圖2和圖3所示時,連結(jié)AC,請你分別在這兩個圖中用尺規(guī)作∠APC的平分線(不寫做法,保留作固痕跡),設(shè)此角平分線交AC于點D,然后在這兩個圖中分別測量出∠CDP的度數(shù);

猜想:∠CDP的度數(shù)是否隨點P在AB延長線上的位置的變化而變化?請對稱的猜想加以證明.

解:(1) 測量結(jié)果:

(2)圖2中的測量結(jié)果:

圖3中的測量結(jié)果:

猜想:

證明:

解:(1) 測量結(jié)果:∠CDP=45°.

(2)圖2中的測量結(jié)果:∠CDP=45°.

圖3中的測量結(jié)果:∠CDP=45°.

猜想:∠CDP=45°,不隨點P在AB延長線上的位置的變化而變化.

證明:連結(jié)OC.

∵PC切⊙O于點C,

∴PC⊥OC,

∴∠1+∠CPO=90°,

∵PC平分∠APC,

∴∠2=1/2∠CPO.

∵OA=OC

∴∠A=∠3.

∴∠1=∠A+∠3,

∴∠A=1/2∠1.

∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

∴猜想正確.

數(shù)學(xué)教案-切線的判定和性質(zhì)