- 相關(guān)推薦
函數(shù)的圖象
教學(xué)目標(biāo) :
1、培養(yǎng)學(xué)生看圖識圖的能力.
2、在識圖過程中,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.
3、從不同知識的背景提取的對象,可以使學(xué)生認(rèn)識到數(shù)學(xué)的廣泛應(yīng)用性.
4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的探索精神
教學(xué)重點(diǎn):培養(yǎng)學(xué)生看圖識圖的能力
教學(xué)難點(diǎn) :滲透數(shù)形結(jié)合的數(shù)學(xué)思想
教學(xué)用具:計(jì)算機(jī)、投影機(jī)
教學(xué)方法:談話法、分組討論
教學(xué)過程 :
1、閱讀習(xí)題13.3的第四題
學(xué)生閱讀后,老師可以提問學(xué)生,分別回答:
下圖是北京春季某一天的
2、提出看圖說圖的重要性
隨著計(jì)算機(jī)的普及,很多軟件都可以做到輸入解析式后,立刻顯示出函數(shù)圖象來,這樣看圖、識圖就變得相當(dāng)重要了.從上題就可以看出,圖形的表示更直觀,一目了然.也便于分析結(jié)論.數(shù)學(xué)不僅有數(shù)的一面,也有“形”的一面.美國著名數(shù)學(xué)家M克萊茵曾指出:“只要代數(shù)同幾何分道揚(yáng)鑣,它們的進(jìn)展就緩慢,它們的應(yīng)用就狹窄.但是當(dāng)這兩門科學(xué)結(jié)合成伴侶時(shí),它們就相互吸取新鮮的活力,從那以后,就以快速的步伐走向完善.”數(shù)學(xué)具有廣泛的應(yīng)用性,其它學(xué)科和日常生活都可以找到應(yīng)用數(shù)學(xué)解決問題的例子.
3、為學(xué)生提供相對豐富的素材,體會以圖識性.
例1、如圖所示,A、B兩條曲線表示A、B兩種物質(zhì)在不同溫度時(shí)的相應(yīng)溶解度,現(xiàn)有未飽和的A、B溶液各一杯,它們的溫度都是 .如果不準(zhǔn)增加A、B兩種溶質(zhì),請你想一想,用什么辦法能分別把它們變成飽和溶液?
(讀題后,可組織學(xué)生分組討論.若學(xué)生還沒有學(xué)習(xí)相應(yīng)的化學(xué)知識,老師可以解釋一下.一般學(xué)生都能理解.關(guān)鍵是學(xué)生都從圖中看出了什么.既有定量的分析,又能得出定性的規(guī)律).
從A、B的溶解度曲線分析,隨著溫度升高,A物質(zhì)的溶解度增大很快,而物質(zhì)B的溶解度變化不大,針對這兩種不同的特征,可以采用不同的方法.
如對未飽和的A溶液,可以采用降低溫度的使它飽和因?yàn)楦鶕?jù)A物質(zhì)的曲線,可以看出,降低溫度,物質(zhì)A的溶解度會迅速減小.
而對B物質(zhì)來講,它的溶解度受溫度的影響變化不大,要把不飽和溶液變?yōu)轱柡停托枰脺p少溶劑的辦法.把溶液加熱,使溶劑蒸發(fā)掉一些.溶劑逐漸減少到一定程度,不飽和的溶液就會變成飽和的了.
例2、 如圖,是各月氣溫的分配圖
能從圖中找出氣溫最低的月份,氣溫最高的月份.
并判斷出該地所處的氣溫帶.
分析:最高氣溫在7月,最低在2月.氣溫曲線的
下限也在 以上,即 ~ 之間,因此可判斷出
該地位于亞熱帶.
(從數(shù)字的變化中,找出事物發(fā)展的規(guī)律.數(shù)學(xué)為其它科學(xué)所用,數(shù)學(xué)能力也包括科學(xué)的收集信息,整理信息,分析信息的能力.本課例也在試圖探索出一條數(shù)學(xué)與其它學(xué)科綜合的課例,讓學(xué)生切實(shí)地體會出畫圖象的好處,體會到數(shù)學(xué)的用處.數(shù)學(xué)收集的是數(shù)量,但我們可以憑借這些數(shù)量,發(fā)現(xiàn)它們背后的科學(xué)規(guī)律.
例3、沒有創(chuàng)新就沒有發(fā)展.因此現(xiàn)代社會要求人必須具有創(chuàng)造性的思維.你想過有關(guān)創(chuàng)造性的問題嗎?人的創(chuàng)造性思維發(fā)展是否隨著年齡的增大而呈直線上升趨勢?男女之間有區(qū)別嗎?你可以談一談你的想法.
參考資料:思維的流暢性,是指在限定時(shí)間內(nèi)產(chǎn)生觀念數(shù)量的多少.在短時(shí)間內(nèi)產(chǎn)生的觀念多,思維流暢性大;反之,思維缺乏流暢性.以研究智力結(jié)構(gòu)和創(chuàng)造性思維而聞名的美國心理學(xué)家吉爾福特把思維流暢性分為四種形式:①用詞的流暢性,一定時(shí)間內(nèi)能產(chǎn)生含有規(guī)定的字母或字母組合的詞匯量的多少;②聯(lián)想的流暢性,在限定的時(shí)間內(nèi)能夠從一個(gè)指定的詞當(dāng)中產(chǎn)生同意詞(或反義詞)數(shù)量的多少;③表達(dá)的流暢性,按照句子結(jié)構(gòu)要求能夠排列詞匯量的數(shù)量的多少;④觀念的流暢性,能夠在限定的時(shí)間內(nèi)產(chǎn)生滿足一定要求的觀念的多少,也就是提出解決問題的答案的多少.
以上的參考資料教師可視學(xué)生的情形靈活處理,可以作為預(yù)習(xí)作業(yè) 提前下發(fā),也可以在上課時(shí),由老師進(jìn)行通俗的解釋.
右圖是以美國心理學(xué)家對小學(xué)一年級學(xué)生至成年人進(jìn)行大規(guī)模有組織的的創(chuàng)造性思維測驗(yàn)后,根據(jù)其中的流暢性分?jǐn)?shù)繪制的曲線圖.
(1)從圖中可以看出,創(chuàng)造性思維的發(fā)展不是直線的,而是成犬齒形曲線
(2)男女生曲線基本相似,波峰與波谷基本出現(xiàn)在同一點(diǎn)上.
(3)小學(xué)一至三年級呈直線上升狀態(tài);小學(xué)四年級下跌;小學(xué)年級又回復(fù)上升;小學(xué)六年級至初中一年級第二次下降;以后直至成人基本保持上升趨勢.
(注)雖然圖中曲線只是兒童期創(chuàng)造性思維的流暢性曲線,但心理學(xué)家認(rèn)為,它也從一定程度上說明了兒童期創(chuàng)造力發(fā)展的一般進(jìn)度.
4、小結(jié):從上面的例題可以看出,數(shù)學(xué)正突破傳統(tǒng)的應(yīng)用范圍向幾乎所有的人類知識領(lǐng)域滲透,并越來越直接地為人類物質(zhì)生產(chǎn)與日常生活做出貢獻(xiàn).因此現(xiàn)代數(shù)學(xué)的特點(diǎn)之一是它廣泛的應(yīng)用性.數(shù)學(xué)的學(xué)習(xí)需要我們有搜集信息分析整理信息的能力.通過觀察、歸納、總結(jié)出規(guī)律,并能應(yīng)用規(guī)律解決問題.
5、作業(yè) :從其它學(xué)科或現(xiàn)實(shí)生活中找出曲線圖,加以分析,提出你自己的想法.
函數(shù)的圖象
【函數(shù)的圖象】相關(guān)文章:
18.2函數(shù)的圖象 教案04-25
高中數(shù)學(xué)函數(shù)的圖象教案12-28
《正弦型函數(shù)y=Asin(ωx+φ) 的圖象》教案04-25
圖象04-29
18.2函數(shù)的圖象 -平面直角坐標(biāo)系教案04-25
反比例函數(shù)的圖象與性質(zhì)教學(xué)反思(精選15篇)12-13
反比例函數(shù)的圖象與性質(zhì)教案范文(通用8篇)04-07
一次函數(shù)的圖象與性質(zhì)說課稿(通用6篇)06-26
《一次函數(shù)圖象與性質(zhì)》同課異構(gòu)聽后反思03-14
小議圖象與圖像05-01