午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

數(shù)學(xué)教案-可化為一元一次方程的分式方程

時間:2023-05-02 02:24:43 初中數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)教案-可化為一元一次方程的分式方程

一、教學(xué)目標(biāo) 

數(shù)學(xué)教案-可化為一元一次方程的分式方程

1.使學(xué)生理解分式方程的意義.

2.使學(xué)生掌握可化為一元一次方程的分式方程的一般解法.

3.了解解分式方程時可能產(chǎn)生增根的原因,并掌握解分式方程的驗很方法.

4.在學(xué)生掌握了分式方程的一般解法和分式方程驗根方法的基礎(chǔ)上,使學(xué)生進一步掌握可化為一元一次方程的分式方程的解法,使學(xué)生熟練掌握解分式方程的技巧.

5.通過學(xué)習(xí)分式方程的解法,使學(xué)生理解解分式方程的基本思想是把分式方程轉(zhuǎn)化成整式方程,把未知問題轉(zhuǎn)化成已知問題,從而滲透數(shù)學(xué)的轉(zhuǎn)化思想.

二、教學(xué)重點和難點

1.教學(xué)重點:

(1)可化為一元一次方程的分式方程的解法.

(2)分式方程轉(zhuǎn)化為整式方程的方法及其中的轉(zhuǎn)化思想.

2.教學(xué)難點 :理解解分式方程時產(chǎn)生增根的原因.

三、教學(xué)方法

啟發(fā)式設(shè)問和同學(xué)討論相結(jié)合,使同學(xué)在討論中解決問題,掌握分式方程解法.

四、教學(xué)手段

演示法和同學(xué)練習(xí)相結(jié)合,以練習(xí)為主.

五、教學(xué)過程 

(一)復(fù)習(xí)及引入新課

1.提問:什么叫方程?什么叫方程的解?

答:含有未知數(shù)的等式叫做方程.

使方程兩邊相等的未知數(shù)的值,叫做方程的解.

2.

解:(1)當(dāng) 時,

左邊=,

右邊=0,

∴左邊=右邊,

(2)

(3)

3、在本章開始我們曾提出一個問題,經(jīng)過分析得到問題的量為兩個分式: , 根據(jù)量間的關(guān)系列出方程:

這個方程和我們以前所見過的方程不同,它的主要特點是:分母中含有未知數(shù),這種方程就是我們今天要研究的分式方程.

(二)新課

板書課題:

板書:分式方程的定義.

分母里含有未知數(shù)的方程叫分式方程.以前學(xué)過的方程都是整式方程.

練習(xí):判斷下列各式哪個是分式方程.(投影)

(1) ; (2) ; (3) ;

(4) ; (5)

在學(xué)生回答的基礎(chǔ)上指出(1)、(2)是整式方程,(3)是分式,(4)(5)是分式方程.

1、如何求解方程 ?

先由同學(xué)討論如何解這個方程.

在同學(xué)討論的基礎(chǔ)上分析:由于我們比較熟悉整式方程的解法,所以要把分式方程轉(zhuǎn)化為整式方程,其關(guān)鍵是去掉含有未知數(shù)的分母.如何去掉?方程兩邊同乘最簡公分母.

解:兩邊同乘以最簡公分母x(x-6)得

90(x-6)=60x解這個整式方程得x=18.

如果我們想檢驗一下這種方法,就需要檢驗一下所求出的數(shù)是不是方程的解.

檢驗:把x=18代入原方程

,

左邊=右邊

∴x=18是原方程的解.

2、如何解方程 ?

此題可由學(xué)生討論解決.

解:方程兩邊同乘最簡公分母(x+1)(x-1),得整式方程x+1=2

解整式方程,得x=1.

x=1時原方程的解是否正確?

檢驗:將x=1代入原方程,可知x=1使分式方程兩邊的分式分母均為零,這兩個分式?jīng)]意義,因此x=1不是原分式方程的解.

∴原方程無解.

討論:1、2兩題都是方程兩邊同除最簡公分母將分式方程轉(zhuǎn)化為整式方程,為什么2求出的x=1不是原方程的解,而我們又得到了x=1呢?

分析:方程同解原理2指出:方程的兩邊都乘以不等于零的同一個數(shù),所得的方程與原方程同解.

在解1中,方程兩邊都乘以x(x-6),接著求出x=18,而當(dāng)x=18時,2(x+5)=216,所以相當(dāng)于方程兩邊都乘以16(≠0),因此所得的整式方程與原方程同解.

在解2中,方程兩邊都乘以(x+1)(x-1),接著求出x=1,相當(dāng)于方程兩邊都乘以零,結(jié)果使原方程無意義,這樣得到的整式方程與原方程不同解.

像這樣,在方程變形時,有時可能產(chǎn)生不適合原方程的根,這種根叫做原方程的增根.

注意:由分式方程轉(zhuǎn)化為一元一次方程過程中,要去分母就必須同乘一個整式,但整式可能為零,不能滿足方程變換同解的原則,就使得分式方程可能產(chǎn)生增根,因此解分式方程后就必須檢驗.

由此可以想到,只要把求得的x的值代入所乘的整式(即最簡公分母),若該式的值不等于零,則是原方程的根;若該式的值為零,則是原方程的增根.如能保證求解過程正確,則這種驗根方法比較簡便.

例1、解方程

對于例題給學(xué)生示范做題的格式、步驟. (投影顯示步驟格式)

解:方程兩邊同乘x(x-2),約去分母,得

5(x-2)=7x解這個整式方程,得

x=5.

檢驗:把x=-5代入最簡公分母

x(x-2)=35≠0,

∴x=-5是原方程的解.

例2、解方程

解:方程兩邊同乘最簡公分母(x-2),約去分母,得

1=x-1-3(x-2). ( -3這項不要忘乘)

解這個整式方程,得

x=2.

檢驗:當(dāng)x=2時,代入最簡公分母(x-2)=0,

∴x=2是增根,

∴原方程無解.

注意:要求學(xué)生一定要嚴(yán)格按解題格式步驟完成.

(三)總結(jié)

解分式方程的一般步驟:

1.在方程的兩邊都乘以最簡公分母,約去分母,化為整式方程.

2.解這個整式方程.

3.把整式方程的根代入最簡公分母,看結(jié)果是不是零,使最簡公分母為零的根是原方程的增根,必須舍去.

(四)練習(xí)

教材P.98中1由學(xué)生在黑板上寫,教師訂正.

六、作業(yè) 

教材P.101中1.

七、板書設(shè)計 

數(shù)學(xué)教案-可化為一元一次方程的分式方程

【數(shù)學(xué)教案-可化為一元一次方程的分式方程】相關(guān)文章:

分式方程教學(xué)反思04-30

把綱領(lǐng)化為行動04-30

可鹽可甜可奶可仙網(wǎng)名03-13

分式和分式方程05-01

分式方程檢測題04-26

閑可(閒可)04-29

讓溝通化為愛11-19

以變化為話題的作文(經(jīng)典)03-27

以變化為話題的作文02-28

可著04-29