- 相關(guān)推薦
數(shù)學(xué)教案-多邊形的內(nèi)角和
教學(xué)建議
1.教材分析
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2.教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認識。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
教學(xué)目標 :
1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
教學(xué)重點:
四邊形的內(nèi)角和定理.
教學(xué)難點 :
四邊形的概念
教學(xué)過程 :
(一)復(fù)習(xí)
在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習(xí):課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內(nèi)角和定理
定理:四邊形的內(nèi)角和等于 .
注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
(五)應(yīng)用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內(nèi)角和等于 ),
(2)
.
練習(xí):
1.課本124頁3題.
2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那么這三個角的度數(shù)分別是多少?
小結(jié):
知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
作業(yè) : 課本130頁 2、3、4題.
數(shù)學(xué)教案-多邊形的內(nèi)角和
【數(shù)學(xué)教案-多邊形的內(nèi)角和】相關(guān)文章:
優(yōu)秀數(shù)學(xué)教案:多邊形的內(nèi)角和08-26
《多邊形的內(nèi)角和》說課稿07-29
《探索多邊形的內(nèi)角和》教學(xué)反思 高04-29
多邊形的內(nèi)角和教學(xué)反思(通用11篇)12-22
多邊形的內(nèi)角和五年級作文04-17