- 相關(guān)推薦
第一冊一元二次方程根的判別式
一、教材分析
1、教材所處的地位和作用:本課是閱讀教材P39頁的有關(guān)內(nèi)容,雖然新課程標(biāo)準(zhǔn)沒有要,教材上也作為閱讀教材,但由于其內(nèi)容太重要了,因而必須把它作為一堂課來上。它的作用在于讓學(xué)生能盡快判定一元二次方程根的情況。
2、教學(xué)內(nèi)容:本課主要是引導(dǎo)學(xué)生通過對一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的觀察,分析,討論,發(fā)現(xiàn),最后得出結(jié)論:只有當(dāng) 2
b2-4ac≥ 0 時,才能直接開平方,進(jìn)一步討論分析得出根的判別式,從而運(yùn)用它解決實(shí)際問題。
3、新課程標(biāo)準(zhǔn)的要求:由于根的判別式作為刪去內(nèi)容,雖然其內(nèi)容重要,因而在處理這部分內(nèi)容時,只能要求作了解性深入,練習(xí)盡可能簡捷明確。
4、教學(xué)目標(biāo) :
(1)知識能力目標(biāo):通過本課的學(xué)習(xí),讓學(xué)生在知識上了解掌握根的判別式。在能力上在求不解方程能判定一元二次方程根的情況;根據(jù)根的情況,探求所需的條件。
(2)情感目標(biāo):學(xué)生通過觀察、分析、討論、相互交流、培養(yǎng)與他人交流的能力,通過觀察、分析、感受數(shù)學(xué)的變化美,激發(fā)學(xué)生的探求欲望。
5、數(shù)學(xué)思想:由感性認(rèn)識到理性認(rèn)識。
6、教學(xué)重點(diǎn):
(1)發(fā)現(xiàn)根的判別式。
(2)用根的判別式解決實(shí)際問題。
7、教學(xué)難點(diǎn) :
根的判別式的發(fā)現(xiàn)
8、教法:啟導(dǎo)、探究
9、學(xué)法:合作學(xué)習(xí)與探究學(xué)習(xí)
10、教學(xué)模式:引導(dǎo)——發(fā)現(xiàn)式
二、教學(xué)過程
(一)自習(xí)回顧,引入新課
1、師生共同回顧:一元二次方程的解法
2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x =-1
(3)(x+1)2- 4=0 (4)x2 +2x+2=0
3、為什么會出現(xiàn)無解?
(二)探索
1、回顧:用配方法解一元二次方程ax2+bx+c=0(a≠0)的過程。
ax2+bx+c= -c
x2+ x =-
x2+ x+( )2=( )2 —
2
(x+ ) 2= 2
2
2、觀察(x+ ) 2= 2 在什么情況下成立?
3、學(xué)生分組討論。
4、猜測?
5、發(fā)現(xiàn)了什么?
6、總結(jié):2(先由學(xué)生完成,后由教師補(bǔ)充完整),通過觀察分析發(fā)現(xiàn),只有當(dāng) b2-4ac≥ 0時, 才能直接開平方,也就是說,一元二次方程ax2+bx+c=0(a≠0)只有當(dāng)系數(shù)a,b,c都是b2-4ac≥ 0時,才有實(shí)數(shù)根。(注意有根和有實(shí)數(shù)根的區(qū)別)
7、進(jìn)一步觀察發(fā)現(xiàn)一元二次方程ax2+bx+c=0(a≠0)
(1)當(dāng)b2-4ac> 0時,_______________________
(2)當(dāng)b2-4ac= 0時,_________________________
(3)當(dāng)b2-4ac< 0時,_________________________
8、總結(jié):
(1)比較分析學(xué)生的討論分析結(jié)果。
(2)由學(xué)生總結(jié)。
(3)教師根據(jù)學(xué)生總結(jié)情況補(bǔ)充完整。
把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判別式。
(1)當(dāng)b2-4ac> 0時,_______________________
(2)當(dāng)b2-4ac= 0時,_________________________
(3)當(dāng)b2-4ac< 0時,________________________
(三)應(yīng)用新知:
1、不解方程判定下列一元二次方程根的情況。
(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____
(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____
(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____
2、根據(jù)根的情況,求字母系數(shù)的取值范圍。
例1:當(dāng)m取什么值時,關(guān)于x的一元二次方程,2x2-(m+2)+2m=0有兩個相等的實(shí)數(shù)根?并求出方程的根。
(1)讀題分析:
A、二次項(xiàng)系數(shù)是什么? a=_______
B、一次項(xiàng)系數(shù)是什么? b=_______
C、常數(shù)項(xiàng)是什么? c=_______
(2)建立等式,根據(jù)有個常數(shù)根 b2-4ac=0
(3)由學(xué)生完成解題過程后教師評價
3、證明
例2:說明不論m取什么值時,關(guān)于x的一元二次方程(x-1)(x-2)=m2,不論m取代的值都有幾個不相等的實(shí)根。
(四)練習(xí)
已知關(guān)于x的一元二次方程2x2-(2m+1)x+m=0的根的判別式是9,求m的值及方程的根。
(五)小結(jié):把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判別式,并會用它們解決一些實(shí)際問題。
三、作業(yè)
1、把例1、例2整理在作業(yè) 本上。
2、有余力的同學(xué)把練習(xí)題整理在作業(yè) 本。
四、教學(xué)后記:
第一冊一元二次方程根的判別式
【第一冊一元二次方程根的判別式】相關(guān)文章:
一元二次方程根與系數(shù)的關(guān)系的教學(xué)反思04-27
一元二次方程教案01-15
一元二次方程的解法教案12-30
一元二次方程教學(xué)反思04-05
一元二次方程的解法教學(xué)反思04-04
數(shù)學(xué)一元二次方程公式教學(xué)03-25
一元二次方程應(yīng)用題提高04-30
數(shù)學(xué)《一元二次方程》教案設(shè)計(jì)12-04
關(guān)于《一元二次方程》教案3篇05-16