[精]七年級數(shù)學上冊教案15篇
作為一位杰出的老師,可能需要進行教案編寫工作,借助教案可以更好地組織教學活動。我們應該怎么寫教案呢?下面是小編為大家收集的七年級數(shù)學上冊教案,歡迎大家分享。
七年級數(shù)學上冊教案1
教學目標和要求:
1.理解單項式及單項式系數(shù)、次數(shù)的概念.
2.會準確迅速地確定一個單項式的系數(shù)和次數(shù).
3.初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識.
4.通過小組討論、合作學習等方式,經(jīng)歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力.
教學重點和難點:
重點:掌握單項式及單項式的系數(shù)、次數(shù)的概念,并會準確迅速地確定一個單項式的系數(shù)和次數(shù).難點:單項式概念的建立.
教學過程:
一、復習引入:
1、列代數(shù)式
(數(shù)學教學要緊密聯(lián)系學生的生活實際,這是新課程標準所賦予的任務.讓學生列代數(shù)式不僅復習前面的知識,更是為下面給出單項式埋下伏筆,同時使學生受到較好的思想品德教育.)
2、請學生說出所列代數(shù)式的意義.
3、請學生觀察所列代數(shù)式包含哪些運算,有何共同運算特征.
由小組討論后,經(jīng)小組推薦人員回答,教師適當點撥.
(充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,可極大的激發(fā)學生學習的積極性和主動性,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性.)
二、講授新課:
1.單項式:
通過特征的描述,引導學生概括單項式的概念,從而引入課題:單項式,并歸納得出單項式的概念:由數(shù)與字母的乘積組成的代數(shù)式稱為單項式.然后教師補充,單獨一個數(shù)或一個字母也是單項式,
如a,5.
2.練習:判斷下列各代數(shù)式哪些是單項式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.
(加強學生對不同形式的單項式的直觀認識,同時利用練習中的單項式轉(zhuǎn)入單項式的系數(shù)和次數(shù)的教學)
3.單項式系數(shù)和次數(shù):
直接引導學生進一步觀察單項式結構,總結出單項式是由數(shù)字因數(shù)和字母因數(shù)兩部分組成的..以
四個單項式a2h,2πr,abc,-m為例,讓學生說出它們的數(shù)字因數(shù)是什么,從而引入單項式系數(shù)的概念并板書,接著讓學生說出以上幾個單項式的字母因數(shù)是什么,各字母指數(shù)分別是多少,從而引入單項式次數(shù)的概念.
單項式的系數(shù):單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù).
單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).
4.例題:
例1:判斷下列各代數(shù)式是否是單項式.如不是,請說明理由;如是,請指出它的系數(shù)和次數(shù).①x+1;②;③πr2;④-a2b
答:①不是,因為原代數(shù)式中出現(xiàn)了加法運算;
、诓皇牵驗樵鷶(shù)式是1與x的商;
、凼牵南禂(shù)是π,次數(shù)是2;
、苁牵南禂(shù)是-,次數(shù)是3.
例2:下面各題的判斷是否正確?
、伲7xy2的系數(shù)是7;②-x2y3與x3沒有系數(shù);③-ab3c2的次數(shù)是0+3+2;
、埽璦3的系數(shù)是-1;⑤-32x2y3的次數(shù)是7;⑥πr2h的系數(shù)是.
答:①錯,應是?7;②錯;?x2y3系數(shù)為?1,x3系數(shù)為1;③錯,次數(shù)應該是1+3+2;④正確;⑤錯,次數(shù)為2+3=5;⑥正確
強調(diào)應注意以下幾點:
①圓周率π是常數(shù);
②當一個單項式的系數(shù)是1或-1時,“1”通常省略不寫,如x2,-a2b等;
③單項式次數(shù)只與字母指數(shù)有關.
5.游戲:
規(guī)則:一個小組學生說出一個單項式,然后指定另一個小組的學生回答他的系數(shù)和次數(shù);然后交換,看兩小組哪一組回答得快而準.
(學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,且由編題學生指定某位同學回答,可使課堂氣氛活躍,學生思維活躍,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的競爭意識.)
三、課堂小結:
、賳雾検郊皢雾検降南禂(shù)、次數(shù).
、诟鶕(jù)教學過程反饋的信息對出現(xiàn)的問題有針對性地進行小結.
、弁ㄟ^判斷一個單項式的系數(shù)、次數(shù),培養(yǎng)學生理解運用新知識的能力,已達到本節(jié)課的教學目的.
教學后記:
本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習.為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊.
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將以啟發(fā)為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,為進一步學習同類項打下堅實的基礎.
七年級數(shù)學上冊教案2
復習目標
1、 經(jīng)歷猜測、試驗、收集與分析試驗結果等活動過程。
2、 初步體驗有些事件的發(fā)生是確定的,有些則是不確定的,能區(qū)分確定事件與不確定事件。
3、 知道事件發(fā)生的可能性是有大小的,能對一些簡單事件發(fā)生的可能性作出描述,能列舉出簡單試驗所有可能發(fā)生的結果,并和同伴交換想法。
復習內(nèi)容
一、基礎知識填空
1.在一定條件下,肯定會發(fā)生的事情稱為 必然事件 ;在一定條件下,一定不會發(fā)生的事情稱為 不可能事件 ;必然 事件與 不可能 事件都是確定 的;在一定條件下,可能會發(fā)生,也可能不會發(fā)生的事件稱為 不確定 事件。
2.在“轉(zhuǎn)盤游戲”中,哪個區(qū)域的面積大,則指針落到該區(qū)域的 可能性 大。
二、典型例題
例題1:下列事件中,哪些是必然事件?哪些是不可能事件,哪些是不確定事件?
。1)一年有12個月; (2)擲一枚一元硬幣,停止后國徽朝上;
。3)明天要下雪; (4)1/4周角=1直角;
。5)任意買一張電影票座位號是奇數(shù);(6)小明的生日是2月30日;
。7)一條魚在白云中飛翔。
分析與解:(1)、(4)是必然事件;(6)、(7)是不可能事件;
(2)、(3)、(5)是不確定事件。因為(6)中2月只有28天,不可能有30日,所以是不可能事件。
注意:在判別事件是確定還是不確定,關鍵是根據(jù)一定的條件弄清它是一定會發(fā)生或一定不會發(fā)生,還是無法肯定它會不會發(fā)生。
例題2:醫(yī)院的護士給病人注射青霉素類藥水時,要先做皮試。但根據(jù)有關數(shù)據(jù)顯示,只有大約千分之一的人對青霉素過敏,但護士為什么每次都這樣做呢?這樣做是不是多此一舉?
分析與解:青霉素過敏的可能性只有千分之一,但它總是有可能發(fā)生的,我們不能確定每一個注射的病人都不會過敏,因此“青霉素過敏”這一事件是可能事件。為了每位病人的'生命安全,一定要先做皮試,此種做法不是多此 一舉。
注意:“不太可能事件”雖然可能性很小,但它仍有可能發(fā)生。
例題3:一只螞蟻在如圖所示的一塊地板上爬行,這塊地板由黑白兩種不同顏色外其它完全相同的地磚鋪成,爬行一段時間后,螞蟻停在哪種顏色地磚上的可能性大,為什么?
分析與解:
因為白色的塊數(shù)是10,黑色的塊數(shù)是6,白色區(qū)域的面積大,所以螞蟻停在白顏色地磚上的可能性大。
注意:有關可能性問題,有時可通過比較各種區(qū)域所占面積的大小來確定。
例題4:袋中有4只紅球、2只白球、1只黃球,這些球除了顏色以外完全相同,小華認為袋中共有三種不同顏色的球,所以從袋中任意摸出一球,摸到紅球、 白球、黃球的可能性一樣大,小強認為三種球的數(shù)量不同,摸到紅球、白球、黃球的可能性肯定也不同,你認為誰說的正確,并說明理由。
分析與解:
注意:此題中摸到各種顏色球的可能性大小只與該球的顏色有關,與該球的大小、形狀等其它因素無關。
三、課時
1、能舉例說明生活中的不確定事件,并能用“不可能”、“有可能”、“幾乎不可能” 等詞語描述它們發(fā)生的可能性大小。
2、了解事件發(fā)生的可能性是有大小的,并初步學會求不確定事件的可能性大小。
3、能養(yǎng)成獨立思考的習慣,學會與同伴充分交流的良好學習方式。
四、課外作業(yè)
七年級數(shù)學上冊教案3
【學習目標】
1、使學生能根據(jù)商品銷售問題中的數(shù)量關系找出等量關系,列出方程,掌握商品盈虧的求法;
2、培養(yǎng)學生分析問題,解決實際問題的能力;
3、讓學生在實際生活問題中,感受到數(shù)學的價值。
【學習重點】用列方程的方法解決打折銷售問題。
【學習難點】準確理解打折銷售問題中的利潤(利潤率)、成本、銷售價之間的關系。
《3.4實際問題與一元一次方程》同步練習含解析
1.班主任老師在七年級(1)班新生分組時發(fā)現(xiàn),若每組7人則多2人,若每組8人則少4人,那么這個班的.學生人數(shù)是( )人.
A.40 B.44 C.51 D.56
2.某玩具的標價是132元,若降價以9折出售仍可獲利10%,則該玩具的進價是( )元.
A.118 B.108 C.106 D.105
3.某車間有27名工人,生產(chǎn)某種由一個螺栓套兩個螺母的產(chǎn)品,每人每天生產(chǎn)螺母16個或螺栓22個,若分配x名工人生產(chǎn)螺栓,其他工人生產(chǎn)螺母,恰好使每天生產(chǎn)的螺栓和螺母配套,則下面所列方程中正確的是( )
A.22x=16(27-x) B.16x=22(27-x)
C.2×16x=22(27-x) D.2×22x=16(27-x)
4.甲倉庫與乙倉庫共存糧450 噸、現(xiàn)從甲倉庫運出存糧的60%.從乙倉庫運出存糧的40%.結果乙倉庫所余的糧食比甲倉庫所余的糧食多30 噸.若設甲倉庫原來存糧x噸,則有( )
A.(1-60%)x-(1-40%)(450-x)=30 B.60%x-40%?(450-x)=30
C.(1-40%)(450-x)-(1-60%)x=30 D.40%?(450-x)-60%?x=30
《3.4實際問題與一元一次方程》同步四維訓練含答案
1.(20xx·黑龍江哈爾濱中考)某車間有26名工人,每人每天可以生產(chǎn)800個螺釘或1 000個螺母,1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.設安排x名工人生產(chǎn)螺釘,則下面所列方程正確的是(C )
A.2×1 000(26-x)=800x
B.1 000(13-x)=800x
C.1 000(26-x)=2×800x
D.1 000(26-x)=800x
2.(20xx·廣西南寧中考)超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程(A )
A.0.8x-10=90 B.0.08x-10=90
C.90-0.8x=10 D.x-0.8x-10=90
3.(20xx·黑龍江綏化中考)一個長方形的周長為30 cm,若這個長方形的長減少1 cm,寬增加2 cm就可成為一個正方形,設長方形的長為x cm,可列方程為(D )
A.x+1=(30-x)-2 B.x+1=(15-x)-2
C.x-1=(30-x)+2 D.x-1=(15-x)+2
七年級數(shù)學上冊教案4
教學目標:
1、正確理解數(shù)軸的意義,理解數(shù)軸的三要素。
2、掌握有理數(shù)在數(shù)軸上的表示法,以及利用數(shù)軸比較有理數(shù)的大小。
3、理解相反數(shù)的意義及求法。
4、對學生滲透數(shù)形結合的思想方法,培養(yǎng)學生的觀察、歸納與概括的能力。
重點難點:
1、正確掌握數(shù)軸的畫法;用數(shù)軸上的點表示有理數(shù);求已知數(shù)的相反數(shù)。
2、有理數(shù)和數(shù)軸上的的點的對應關系。
教學方法:
合作探究交流
學法指導:
觀察歸納概括
教學過程:
一、情景引入:
(1)你會讀溫度計嗎?完成課本43頁最上面的讀溫度計的問題。
。2)我們能否用類似溫度計的圖形表示有理數(shù)呢?
二、講授新課:認真閱讀課本第43頁至45頁,完成下列問題
。1)畫一條水平直線,在直線上取一點O(叫做▁▁▁),選取某一長度作為▁▁▁▁,規(guī)定向右的方向為▁▁▁,就得到了數(shù)軸。
于是,+3可以用數(shù)軸上位于原點右邊3個單位的點表示,—4可以用數(shù)軸上位于原點左邊4個單位的點表示,在數(shù)軸上位于原點右邊點表示,在數(shù)軸上位于原點左邊1、5的點表示,任何有理數(shù)都可以用數(shù)軸上的一個點來表示。
三、例題講解、鞏固提高
例1、如圖,指出數(shù)軸上A、B、C、D各點表示什么數(shù)?
A D CB
–2 –1 0 1 2 3
解:點A表示—2;點B表示2;點C表示0;
點D表示—1
練習:畫出數(shù)軸并用數(shù)軸上的點表示下列個數(shù):
—5,0,5,—4,—、
四、繼續(xù)探究
2與—2有什么相同點與不同點?它們在數(shù)軸上的位置有什么關系?5與—5,與–呢?
如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)、特別地0的相反數(shù)是0、
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點的距離相等、
練習:1、5的相反數(shù)是▁▁;▁▁的相反數(shù)是—3、5。
議一議
數(shù)軸上的兩個點,右邊點表示的數(shù)與左邊點表示的數(shù)有怎樣的大小關系?
數(shù)軸上表示的數(shù),▁▁▁邊的`總比▁▁▁邊的大;正數(shù)▁▁▁0,負數(shù)▁▁▁0,正數(shù)▁▁▁負數(shù)。
練習:比較大。骸3▁5;0 ▁—4;—3 ▁—2、5。
3、合作交流
。1)什么是數(shù)軸?怎樣畫數(shù)軸。
。2)有理數(shù)與數(shù)軸上的點之間存在怎樣的關系?
。3)什么是相反數(shù)?怎樣求一個數(shù)的相反數(shù)?
(4)如何利用數(shù)軸比較有理數(shù)的大?
5、隨堂練習:
。1)下列說法正確的是()
A、數(shù)軸上的點只能表示有理數(shù)
B、一個數(shù)只能用數(shù)軸上的一個點表示
C、在1和3之間只有2
D、在數(shù)軸上離原點2個單位長度的點表示的數(shù)是2
。2)語句:①—5是相反數(shù)?②—5與+3互為相反數(shù)③—5是5的相反數(shù)④—5和5互為相反數(shù)⑤0的相反數(shù)是0⑥—0=0。上述說法中正確的是()
A、①②⑥ B、②③⑤ C、①④ D、③④⑤⑥
(3)大于—4而小于4的整數(shù)有▁▁▁▁▁▁。
(4)用“﹤”或“﹥”號填空
、佟5▁▁—7②0 ▁▁—2③0、01▁▁▁—0、1
。5)寫出下列各數(shù)的相反數(shù)
3、4,—3,0,a,2a—3。
七年級數(shù)學上冊教案5
教學目標
1.經(jīng)歷觀察、分析、操作、欣賞以及抽象,歸納等過程,經(jīng)歷探索圖形平移性質(zhì)的過程以及與他人合作交流的過程,進一步發(fā)展空間觀念,增強審美意識。
2.通過實例認識平移,理解平移的含義,理解平移前后兩個圖形對應點連線平行且相等的性質(zhì).
重點、難點
重點:探索并理解平移的性質(zhì).
難點:對平移的認識和性質(zhì)的探索.
教學過程
一、引入新課
1.教師打開幻燈機,投放課本圖5.4-1的圖案.
2.學生觀察這些圖案、思考并回答問題.
(1)它們有什么共同的特點?
(2)能否根據(jù)其中的一部分繪制出整個圖案?
3.師生交流.
(1)這引進美麗的圖案是由若干個相同的圖案組合而成的,圖5.4-1 上一排左邊的'圖案(不考慮顏色)都有“基本圖形”;中間一個正方形,上、下有正立與倒立的正三角形,如圖(1);上排中間的圖案(不考慮顏色)都有“基本圖形”:正十二邊形, 四周對稱著4個等邊三角形,如圖(2);上排右邊的圖案(不考慮顏色)都有“基本圖形”;正六邊形,內(nèi)接六角星,如圖(3);下排的左圖中的“基本圖形”是鴿子與橄欖枝; 下排右圖中的“基本圖形”是上、下一對面朝右與面朝左的人頭像組成的圖案.
《5.4平移》同步講義練習和同步練習
1在△ABC中,∠C=90°,AC=BC=5,現(xiàn)將△ABC沿著CB的方向平移到△A′B′C′的位置,若平移的距離為2,則圖中的陰影部分的面積為 .
2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求陰影部分的面積為 cm2.
3、紿正五邊形的頂點依次編號為1,2,3,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次“移位”.如:小宇在編號為3的頂點上時,那么他應走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達編號為l的頂點;然后從1→2為第二次“移位”.若小宇從編號為2的頂點開始,第20xx次“移位”后,則他所處頂點的編號是 .
《5.4平移》同步測試卷含答案
1. 將圖形平移,下列結論錯誤的是( )
A.對應線段相等
B.對應角相等
C.對應點所連的線段互相平分
D.對應點所連的線段相等
解析: 根據(jù)平移的性質(zhì),將圖形平移,對應線段相等、對應角相等、對應點所連的線段相等,而對應點所連的線段不一定互相平分,故選C.
12. 國旗上的四個小五角星,通過怎樣的移動可以相互得到( )
A.軸對稱 B.平移 C.旋轉(zhuǎn) D.平移和旋轉(zhuǎn)
解析: 國旗上的四個小五角星通過平移和旋轉(zhuǎn)可以相互得到.故選D.
七年級數(shù)學上冊教案6
教學目標
1.知識與技能
、倮斫庥欣頂(shù)的意義.②能把給出的有理數(shù)按要求分類.③了解0在有理數(shù)分類的作用.
2.過程與方法
經(jīng)歷本節(jié)的`學習,培養(yǎng)學生樹立分類討論的觀點和能正確地進行分類的能力.
3.情感、態(tài)度與價值觀
通過聯(lián)系與發(fā)展、對立與統(tǒng)一的思考方法對學生進行辯證唯物主義教育.
教學重點難點
重點:會把所給的各數(shù)填入它所在的數(shù)集的圖里.難點:掌握有理數(shù)的兩種分類.
教與學互動設計
(一)創(chuàng)設情境,導入新課
討論交流現(xiàn)在,同學們都已經(jīng)知道除了我們小學里所學的數(shù)之外,還有另一種形式的數(shù),即負數(shù).大家討論一下,到目前為止,你已經(jīng)認識了哪些類型的數(shù).
(二)合作交流,解讀探究
學生列舉:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…
議一議你能說說這些數(shù)的特點嗎?
學生回答,并相互補充:有小學學過的整數(shù)、0、分數(shù),也有負整數(shù)、負分數(shù).
說明:我們把所有的這些數(shù)統(tǒng)稱為有理數(shù).
七年級數(shù)學上冊教案7
教學目的:
(一)知識點目標:
1.了解正數(shù)和負數(shù)是怎樣產(chǎn)生的。
2.知道什么是正數(shù)和負數(shù)。
3.理解數(shù)0表示的量的意義。
(二)能力訓練目標:
1.體會數(shù)學符號與對應的思想,用正、負數(shù)表示具有相反意義的量的符號化方法。
2.會用正、負數(shù)表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯(lián)系實際,激發(fā)學生學好數(shù)學的熱情。
教學重點:
知道什么是正數(shù)和負數(shù),理解數(shù)0表示的量的意義。
教學難點:
理解負數(shù),數(shù)0表示的量的意義。
教學方法:
師生互動與教師講解相結合。
教具準備:
地圖冊(中國地形圖)。
教學過程:
引入新課:
1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、?
內(nèi)容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節(jié)課,我們就來學習這種帶有特殊符號、表示具有實際意義的數(shù)-----正數(shù)和負數(shù)。
講授新課:
1.自然數(shù)的產(chǎn)生、分數(shù)的產(chǎn)生。
2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數(shù)與排名順序、±0.5、-9的意義。
3、正數(shù)、負數(shù)的定義:我們把以前學過的0以外的數(shù)叫做正數(shù),在這些數(shù)的前面帶有“一”時叫做負數(shù)。根據(jù)需要有時在正數(shù)前面也加上“十”(正號)表示正數(shù)。
舉例說明:3、2、0.5、等是正數(shù)(也可加上“十”)
-3、-2、-0.5、-等是負數(shù)。
4、數(shù)0既不是正,也不是負數(shù),0是正數(shù)和負數(shù)的分界。
0℃是一個確定的'溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數(shù)在實際中的應用。展示圖片(又見教材P5圖1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地X銀行的存折,說出你知道的信息。
鞏固提高:練習:課本P5練習
課時小結:這節(jié)課我們學習了哪些知識?你能說一說嗎?
課后作業(yè):課本P7習題1.1的第1、2、4、5題。
活動與探究:在一次數(shù)學測驗中,X班的平均分為85分,把高于平均分的高出部分記為正數(shù)。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
七年級數(shù)學上冊教案8
單元教學內(nèi)容
1、本單元結合學生的生活經(jīng)驗,列舉了學生熟悉的用正、負數(shù)表示的實例,從擴充運算的角度引入負數(shù),然后再指出可以用正、負數(shù)表示現(xiàn)實生活中具有相反意義的量,使學生感受到負數(shù)的引入是來自實際生活的需要,體會數(shù)學知識與現(xiàn)實世界的聯(lián)系
引入正、負數(shù)概念之后,接著給出正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)集合及整數(shù)、分數(shù)和有理數(shù)的概念
2、通過怎樣用數(shù)簡明地表示一條東西走向的馬路旁的樹、電線桿與汽車站的相對位置關系引入數(shù)軸、數(shù)軸是非常重要的數(shù)學工具,它可以把所有的有理數(shù)用數(shù)軸上的點形象地表示出來,使數(shù)與形結合為一體,揭示了數(shù)形之間的內(nèi)在聯(lián)系,從而體現(xiàn)出以下4個方面的作用:
。1)數(shù)軸能反映出數(shù)形之間的對應關系
。2)數(shù)軸能反映數(shù)的性質(zhì)、
(3)數(shù)軸能解釋數(shù)的某些概念,如相反數(shù)、絕對值、近似數(shù)
(4)數(shù)軸可使有理數(shù)大小的比較形象化
3、對于相反數(shù)的概念,從“數(shù)軸上表示互為相反數(shù)的兩點分別在原點的兩旁,且離開原點的距離相等”來說明相反數(shù)的幾何意義,同時補充“零的相反數(shù)是零”作為相反數(shù)意義的一部分
4、正確理解絕對值的概念是難點
根據(jù)有理數(shù)的絕對值的兩種意義,可以歸納出有理數(shù)的絕對值有如下性質(zhì):
。1)任何有理數(shù)都有唯一的絕對值
(2)有理數(shù)的絕對值是一個非負數(shù),即最小的絕對值是零
(3)兩個互為相反數(shù)的絕對值相等,即│a│=│-a│
。4)任何有理數(shù)都不大于它的絕對值,即│a│≥a,│a│≥-a
。5)若│a│=│b│,則a=b,或a=-b或a=b=0
三維目標
1、知識與技能
。1)了解正數(shù)、負數(shù)的實際意義,會判斷一個數(shù)是正數(shù)還是負數(shù)
(2)掌握數(shù)軸的畫法,能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的解
。3)理解相反數(shù)、絕對值的幾何意義和代數(shù)意義,會求一個數(shù)的相反數(shù)和絕對值
。4)會利用數(shù)軸和絕對值比較有理數(shù)的大小
2、過程與方法
經(jīng)過探索有理數(shù)運算法則和運算律的過程,體會“類比”、“轉(zhuǎn)化”、“數(shù)形結合”等數(shù)學方法
3、情感態(tài)度與價值觀
使學生感受數(shù)學知識與現(xiàn)實世界的聯(lián)系,鼓勵學生探索規(guī)律,并在合作交流中完善規(guī)范語言
重、難點與關鍵
1、重點:正確理解有理數(shù)、相反數(shù)、絕對值等概念;會用正、負數(shù)表示具有相反意義的量,會求一個數(shù)的相反數(shù)和絕對值
2、難點:準確理解負數(shù)、絕對值等概念
3、關鍵:正確理解負數(shù)的意義和絕對值的意義
課時劃分
1、1 正數(shù)和負數(shù) 2課時
1、2 有理數(shù) 5課時
1、3 有理數(shù)的加減法 4課時
1、4 有理數(shù)的乘除法 5課時
1、5 有理數(shù)的乘方 4課時
第一章有理數(shù)(復習) 2課時
1、1正數(shù)和負數(shù)
第一課時
三維目標
一、知識與技能
能判斷一個數(shù)是正數(shù)還是負數(shù),能用正數(shù)或負數(shù)表示生活中具有相反意義的量
二、過程與方法
借助生活中的'實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應用的廣泛性
三、情感態(tài)度與價值觀
培養(yǎng)學生積極思考,合作交流的意識和能力
教學重、難點與關鍵
1、重點:正確理解負數(shù)的意義,掌握判斷一個數(shù)是正數(shù)還是負數(shù)的方法。
2、難點:正確理解負數(shù)的概念。
3、關鍵:創(chuàng)設情境,充分利用學生身邊熟悉的事物,加深對負數(shù)意義的理解。
教具準備
投影儀、
教學過程
四、課堂引入
我們知道,數(shù)是人們在實際生活和生活需要中產(chǎn)生,并不斷擴充的、人們由記數(shù)、排序、產(chǎn)生數(shù)1,2,3,…;為了表示“沒有物體”、“空位”引進了數(shù)“0”,測量和分配有時不能得到整數(shù)的結果,為此產(chǎn)生了分數(shù)和小數(shù)、
在生活、生產(chǎn)、科研中經(jīng)常遇到數(shù)的表示與數(shù)的運算的問題,例如課本第2頁至第3頁中提到的四個問題,這里出現(xiàn)的新數(shù):-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%、
五、講授新課
。1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學過的0以外的數(shù)前面加上負號“-”的數(shù))叫做負數(shù)、而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學過的0以外的數(shù))叫做正數(shù),有時在正數(shù)前面也加上“+”(正)號,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一個數(shù)前面的“+”、“-”號叫做它的符號,這種符號叫做性質(zhì)符號
。2)、中國古代用算籌(表示數(shù)的工具)進行計算,紅色算籌表示正數(shù),黑色算籌表示負數(shù)
(3)、數(shù)0既不是正數(shù),也不是負數(shù),但0是正數(shù)與負數(shù)的分界數(shù)
。4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度。
用正負數(shù)表示具有相反意義的量。
。5)、 把0以外的數(shù)分為正數(shù)和負數(shù),起源于表示兩種相反意義的量、正數(shù)和負數(shù)在許多方面被廣泛地應用、在地形圖上表示某地高度時,需要以海平面為基準,通常用正數(shù)表示高于海平面的某地的海拔高度,負數(shù)表示低于海平面的某地的海拔高度、例如:珠穆朗瑪峰的海拔高度為8844,吐魯番盆地的海拔高度為-155、記錄賬目時,通常用正數(shù)表示收入款額,負數(shù)表示支出款額。
。6)、 請學生解釋課本中圖1、1-2,圖1、1-3中的正數(shù)和負數(shù)的含義。
(7)、 你能再舉一些用正負數(shù)表示數(shù)量的實際例子嗎?
。8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負數(shù)表示水位下降的高度;用正數(shù)表示買進東西的數(shù)量,用負數(shù)表示賣出東西的數(shù)量
六、鞏固練
課本第3頁,練習1、2、3、4題
七年級數(shù)學上冊教案9
教學目標和要求:
1.理解單項式及單項式系數(shù)、次數(shù)的概念。
2.會準確迅速地確定一個單項式的系數(shù)和次數(shù)。
3.初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。
4.通過小組討論、合作學習等方式,經(jīng)歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流能力。
教學重點和難點:
重點:掌握單項式及單項式的系數(shù)、次數(shù)的概念,并會準確迅速地確定一個單項式的系數(shù)和次數(shù)。
難點:單項式概念的建立。
教學方法:
分層次教學,講授、練習相結合。
教學過程:
一、復習引入:
1、 列代數(shù)式
(1)若正方形的邊長為a,則正方形的面積是 ;
(2)若三角形一邊長為a,并且這邊上的高為h,則這個三角形的面積為 ;
(3)若x表示正方形棱長,則正方形的體積是 ;
(4)若m表示一個有理數(shù),則它的相反數(shù)是 ;
(5)小明從每月的零花錢中貯存x元錢捐給希望工程,一年下來小明捐款 元。
(數(shù)學教學要緊密聯(lián)系學生的生活實際,這是新課程標準所賦予的任務。讓學生列代數(shù)式不僅復習前面的知識,更是為下面給出單項式埋下伏筆,同時使學生受到較好的思想品德教育。)
2、 請學生說出所列代數(shù)式的意義。
3、 請學生觀察所列代數(shù)式包含哪些運算,有何共同運算特征。
由小組討論后,經(jīng)小組推薦人員回答,教師適當點撥。
(充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,可極大的激發(fā)學生學習的積極性和主動性,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性。)
二、講授新課:
1.單項式:
通過特征的描述,引導學生概括單項式的概念,從而引入課題:單項式,并板書歸納得出的單項式的概念,即由數(shù)與字母的乘積組成的代數(shù)式稱為單項式。然后教師補充,單獨一個數(shù)或一個字母也是單項式,如a,5。
2.練習:判斷下列各代數(shù)式哪些是單項式?
(1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。
(加強學生對不同形式的單項式的直觀認識,同時利用練習中的單項式轉(zhuǎn)入單項式的'系數(shù)和次數(shù)的教學)
3.單項式系數(shù)和次數(shù):
直接引導學生進一步觀察單項式結構,總結出單項式是由數(shù)字因數(shù)和字母因數(shù)兩部分組成的。以四個單項式a2h,2r,abc,-m為例,讓學生說出它們的數(shù)字因數(shù)是什么,從而引入單項式系數(shù)的概念并板書,接著讓學生說出以上幾個單項式的字母因數(shù)是什么,各字母指數(shù)分別是多少,從而引入單項式次數(shù)的概念并板書。
4.例題:
例1:判斷下列各代數(shù)式是否是單項式。如不是,請說明理由;如是,請指出它的系數(shù)和次數(shù)。
、賦+1; ② ; ③ ④- a2b。
答:①不是,因為原代數(shù)式中出現(xiàn)了加法運算;②不是,因為原代數(shù)式是1與x的商;
③是,它的系數(shù)是,次數(shù)是2; ④是,它的系數(shù)是- ,次數(shù)是3。
例2:下面各題的判斷是否正確?
、-7xy2的系數(shù)是7; ②-x2y3與x3沒有系數(shù); ③-ab3c2的次數(shù)是0+3+2;
④-a3的系數(shù)是-1; ⑤-32x2y3的次數(shù)是7; ⑥ r2h的系數(shù)是 。
通過其中的反例練習及例題,強調(diào)應注意以下幾點:
、賵A周率是常數(shù);
、诋斠粋單項式的系數(shù)是1或-1時,1通常省略不寫,如x2,-a2b等;
③單項式次數(shù)只與字母指數(shù)有關。
5.游戲:
規(guī)則:一個小組學生說出一個單項式,然后指定另一個小組的學生回答他的系數(shù)和次數(shù);然后交換,看兩小組哪一組回答得快而準。
(學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,且由編題學生指定某位同學回答,可使課堂氣氛活躍,學生思維活躍,使學生能夠透徹理解知識,同時培養(yǎng)同學之間的競爭意識。)
6.課堂練習:課本p56:1,2。
三、課堂小結:
、賳雾検郊皢雾検降南禂(shù)、次數(shù)。
、诟鶕(jù)教學過程反饋的信息對出現(xiàn)的問題有針對性地進行小結。
③通過判斷一個單項式的系數(shù)、次數(shù),培養(yǎng)學生理解運用新知識的能力,已達到本節(jié)課的教學目的。
四、課堂作業(yè): 課本p59:1,2。
板書設計:
《單項式》 1.單項式的定義: 2.例1: 例2: 學生練習:
教學后記:
本節(jié)課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續(xù)學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數(shù)、次數(shù),為進一步學習新知做好鋪墊。
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將以啟發(fā)為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養(yǎng)起學生觀察、分析、抽象、概括的能力,為進一步學習同類項打下堅實的基礎。
七年級數(shù)學上冊教案10
教學目標
1.利用10的乘方,進行科學記數(shù),會用科學記數(shù)法表示大于10的數(shù);(重點)
2.能將用科學記數(shù)法表示的數(shù)還原為原數(shù).(重點)
教學過程
一、情境導入
在悉尼舉行的國際天文學聯(lián)合會大會上,天文學家指出整個可見宇宙空間大約有700萬億億顆恒星,這個數(shù)字比地球上所有沙漠和海灘上的沙礫總和數(shù)量還要多.
如果想在字面上表示出這一數(shù)字,需要在“7”后面加上22個“0”.即約為“70000000000000000000000”顆.
生活中,我們還常會遇到一些比較大的數(shù).例如:
1.據(jù)報載,20xx年我國將發(fā)展固定寬帶接入新用戶25000000戶.
2.全球每年大約有577000000000000m3的水從海洋和陸地轉(zhuǎn)化為大氣中的水汽.
3.拒絕“餐桌浪費”刻不容緩,據(jù)統(tǒng)計,全國每年浪費糧食總量約50000000000千克.
像這些較大的數(shù)據(jù),書寫和閱讀都有一定的難度,那么有沒有這樣一種表示方法,使得這些大數(shù)易寫、易讀、易于計算呢?
二、合作探究
探究點一:用科學記數(shù)法表示大數(shù)
例1 我區(qū)深入實施環(huán)境污染整治,關停和整改了一些化工企業(yè),使得每年排放的污水減少了167000噸,將167000用科學記數(shù)法表示為( )
A.167×103 B.16.7×104
C.1.67×105 D.1.6710×106
解析:根據(jù)科學記數(shù)法的表示形式,先確定a,再確定n,解此類題的關鍵是a,n的確定.167000=1.67×105,故選C.
方法總結:科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的.值以及n的值.
例2 20xx年3月發(fā)生了一件舉國悲痛的空難事件——馬航失聯(lián),該飛機上有中國公民154名.噩耗傳來后,我國為了搜尋生還者及找到失聯(lián)飛機,花費了大量的人力物力,已花費人民幣大約934千萬元.把934千萬元用科學記數(shù)法表示為______元( )
A.9.34×102 B.0.934×103
C.9.34×109 D.9.34×1010
解析:934千萬=9340000000=9.34×109.故選C.
方法總結:對用帶“萬”“千萬”“億”等單位的數(shù)用科學記數(shù)法表示時,要化成不帶單位的數(shù),再用科學記數(shù)法表示.
探究點二:將用科學記數(shù)法表示的數(shù)轉(zhuǎn)換為原數(shù)
例3 已知下列用科學記數(shù)法表示的數(shù),寫出原來的數(shù):
(1)2.01×104;(2)6.070×105;(3)-3×103.
解析:(1)將2.01的小數(shù)點向右移動4位即可;(2)將6.070的小數(shù)點向右移動5位即可;(3)將-3擴大1000倍即可.
解:(1)2.01×104=20100;
(2)6.070×105=607000;
(3)-3×103=-3000.
方法總結:將科學記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),就是把a的小數(shù)點向右移動n位所得到的數(shù).
三、板書設計
科學記數(shù)法:
(1)把大于10的數(shù)表示成a×10n的形式.
(2)a的范圍是1≤|a|<10,n是正整數(shù).
(3)n比原數(shù)的整數(shù)位數(shù)少1.
教學反思
本節(jié)課的特點是實際性強,和我們的日常生活聯(lián)系緊密,從學生的生活經(jīng)驗和已有的知識出發(fā),創(chuàng)設生動有趣的情境,引導學生開展觀察、討論、交流等活動.把學生被動接受知識的過程變?yōu)橹鲃犹骄堪l(fā)現(xiàn)的過程,使知識的發(fā)生與發(fā)展在每一位學生各自的體驗和自主學習中逐漸展現(xiàn).
七年級數(shù)學上冊教案11
教學目標:
1.通過對“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念,能利用正負數(shù)正確表示具有相反意義的量(規(guī)定了向指定方向變化的量);
2.進一步體驗正負數(shù)在生產(chǎn)生活中的廣泛應用,提高解決實際問題的能力.
教學重點:
深化對正負數(shù)概念的理解.
教學難點:
正確理解和表示向指定方向變化的量.
教與學互動設計:
(一)知識回顧和理解
通過對上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著具有兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.
[問題1]:“零”為什么既不是正數(shù)也不是負數(shù)呢?
學生思考討論,借助舉例說明.
參考例子:用正數(shù)、負數(shù)和零表示零上溫度、零下溫度和零度.
思考“0”在實際問題中有什么意義?
歸納“0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.
如:水位不升不降時的'水位變化,記作:0 m.
[問題2]:引入負數(shù)后,數(shù)按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?
(二)深化理解,解決問題
[問題3]:(課本P3例題)
【例1】(1)一個月內(nèi),小明體重增加2 kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家這一年商品進出口總額的增長率.
解后語:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數(shù)來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數(shù)表示它們.
鞏固練習
1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
2.讓學生再舉出一些常見的具有相反意義的量.
3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:
中國減少866,印度增長72,
韓國減少130,新西蘭增長434,
泰國減少3247,孟加拉減少88.
(1)用正數(shù)和負數(shù)表示這六國1990~1995年平均森林面積的增長量;
(2)如何表示森林面積減少量,所得結果與增長量有什么關系?
(3)哪個國家森林面積減少最多?
(4)通過對這些數(shù)據(jù)的分析,你想到了什么?
閱讀與思考
(課本P6)用正數(shù)和負數(shù)表示加工允許誤差.
問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?
2.你知道還有哪些事件可以用正負數(shù)表示允許誤差嗎?請舉例.
(三)應用遷移,鞏固提高
1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5 ℃,則乙冷庫的溫度是.
2.一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9 mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?
3.摩托車廠本周計劃每天生產(chǎn)250輛摩托車,由于工人實行輪休,每天上班的人數(shù)不一定相等,實際每天生產(chǎn)量(與計劃量相比)的增減值如下表:
星期一二三四
增減-5 +7 -3 +4
根據(jù)上面的記錄,問:哪幾天生產(chǎn)的摩托車比計劃量多?星期幾生產(chǎn)的摩托車最多,是多少輛?星期幾生產(chǎn)的摩托車最少,是多少輛?
類比例題,要求學生注意書寫格式,體會正負數(shù)的應用.
(四)課時小結(師生共同完成)
七年級數(shù)學上冊教案12
學習目標:
1.了解算術平方根的概念,會用根號表示數(shù)的算術平方根;
2. 會用平方運算求某些非負數(shù)的算術平方根;
3.能運用算術平方根解決一些簡單的實際問題.
學習重點:
會用平方運算求某些非負數(shù)的`算術平方根,能運用算術平方根解決一些簡單的實際問題.
學習難點:
區(qū)別平方根與算術平方根
掌握本章基本概念與運算,能用本章知識解決實際問題.
【知識與技能】
【過程與方法】
通過梳理本章知識點,挖掘知識點間的聯(lián)系,并應用于實際解題中.
【情感態(tài)度】
領悟分類討論思想,學會類比學習的方法.
【教學重點】
本章知識梳理及掌握基本知識點.
【教學難點】
應用本章知識解決實際與綜合問題.
一、知識框圖,整體把握
【教學說明】
1.通過構建框圖,幫助學生回憶本節(jié)所有基本概念和基本方法.
2.幫助學生找出知識間聯(lián)系,如平方與開平方,平方根與立方根,有理數(shù)與實數(shù)等等.
二、釋疑解惑,加深理解
1.利用平方根的概念解題
在利用平方根的概念解題時,主要涉及平方根的性質(zhì):正數(shù)有兩個平方根,且它們互為相反數(shù);以及平方根的非負性:被開方數(shù)為非負數(shù),算術平方根也為非負數(shù).
例1已知某數(shù)的平方根是a+3及2a-12,求這個數(shù).
分析:由題意可知,a+3與2a-12互為相反數(shù),則它們的和為0.解:根據(jù)題意可得,a+3+2a-12=0.
解得a=3.
∴a+3=6,2a-12=-6.
∴這個數(shù)是36.
【教學說明】
負數(shù)沒有平方根,非負數(shù)才有平方根,它們互為相反數(shù),而0是其中的一個特例.
2.比較實數(shù)的大小
除常用的法則比較實數(shù)大小外,有時要根據(jù)題目特點選擇特別方法.
七年級數(shù)學上冊教案13
一、教學目標
1.使學生認識平行線的特征,能靈活地利用平行線的三個特征解決問題.
2.繼續(xù)對學生進行初步的數(shù)學語言的訓練,使學生能用數(shù)學語言敘述平行線的特征,并能用初步的數(shù)學語言進行簡單的邏輯推理.
3.使學生理解平移的思想,知道圖形經(jīng)過平移以后的位置,并能畫出平移后的圖形.
4.通過利用“幾何畫板”所做的數(shù)學實驗的演示等,培養(yǎng)學生的觀察能力,即在圖形的運動變化中抓住圖形的本質(zhì)特征,發(fā)展學生邏輯思維能力,通過實際問題的解決培養(yǎng)學生分析問題和解決問題的能力.
5.通過課堂設疑,培養(yǎng)學生勇于發(fā)現(xiàn)、探索新知識的精神.
6.通過創(chuàng)設問題情境,讓學生親身體驗、直觀感知并操作確認,激發(fā)學生自主學習的欲望,使之愛學、會學、學會、會用.
二、教學重點
平行線的三個特征.
三、教學難點
靈活地利用平行線的三個特征解決問題.
四、教學過程
老師:同學們,如圖所示,是我們大連的馬欄河,河上有兩座橋:新華橋和光明橋.河的.兩岸是兩條平行的公路:黃河路與高爾基路,某測量員在A點測得.如果你不通過測量,能否猜出的度數(shù)是多少?
王亮:.
老師:他到底猜得對不對呢?下面我們要先做一個實驗,拿出尺子,畫兩條平行的直線a、b,第三條直線l和這兩條直線相交,標出所得到的角,用量角器量出各個角的度數(shù),觀察當兩直線平行時,各種角有什么關系.
學生動手按要求做實驗.
老師:將你發(fā)現(xiàn)的規(guī)律與組內(nèi)同學進行交流.
學生以小組為單位進行交流與研究.
老師:請每組派一名代表將你們得到的規(guī)律寫到黑板上,并結合你畫的圖講解你們組的結論.
第1組學生代表:如果兩直線平行,同位角就相等。
七年級數(shù)學上冊教案14
第一課時
教學目的
讓學生通過獨立思考,積極探索,從而發(fā)現(xiàn);初步體會數(shù)形結合思想的作用。
重點、難點
1.重點:通過分析圖形問題中的數(shù)量關系,建立方程解決問題。
2.難點:找出“等量關系”列出方程。
教學過程
一、復習提問
1.列一元一次方程解應用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?
不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據(jù)這個等量關系,確定如何設未知數(shù)。
(3)當長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發(fā)現(xiàn)了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的`面積有什么變化?猜想寬比長少多少時,長方形的面積最大呢?并加以驗證。
實際上,如果兩個正數(shù)的和不變,當這兩個數(shù)相等時,它們的積最大,通過以后的學習,我們就會知道其中的道理。
三、鞏固練習
教科書第14頁練習1、2。
第l題等量關系是:圓柱的體積=長方體的體積。
第2題等量關系是:玻璃杯中的水的體積十瓶內(nèi)剩下的水的體積=原來整瓶水的體積。
四、小結
運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯(lián)系實際,積極探索,找出等量關系。
五、作業(yè)
教科書第16頁,習題6.3.1第1、2、3。
第二課時
教學目的
通過分析儲蓄中的數(shù)量關系、商品利潤等有關知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優(yōu)惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學問題,然后分析數(shù)學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據(jù)題意首先尋找“等量關系”。
五、作業(yè)
教科書第16頁,習題6.3.1,第4、5題。
三課時
教學目的
借助“線段圖”分析復雜的行程問題中的數(shù)量關系,從而建立方程解決實際問題,發(fā)展分析問題,解決問題的能力,進一步體會方程模型的作用。
重點、難點
1.重點:列一元一次方程解決有關行程問題。
2.難點:間接設未知數(shù)。
教學過程
一、復習
1.列一元一次方程解應用題的一般步驟和方法是什么?
2.行程問題中的基本數(shù)量關系是什么?
路程=速度×時間 速度=路程 / 時間
二、新授
例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉(xiāng)看望爺爺,在行駛了三分之一路程后,估計繼續(xù)乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?
畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關系是什么?
如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設公共汽車從小張家到火車站要x小時。
設未知數(shù)的方法不同,所列方程的復雜程度一般也不同,因此在設未知數(shù)時要有所選擇。
三、鞏固練習
教科書第17頁練習1、2。
四、小結
有關行程問題的應用題常見的一個數(shù)量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數(shù)使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據(jù)這個等量關系確定怎樣設未知數(shù)。
四、作業(yè)
教科書習題6.3.2,第1至5題。
第四課時
教學目的
1.理解用一元一次方程解工程問題的本質(zhì)規(guī)律;通過對“工程問題”的分析進一步培養(yǎng)學生用代數(shù)方法解決實際問題的能力。
2.理解和掌握基本的數(shù)學知識、技能、數(shù)學思想方法,獲得廣泛的數(shù)學活動經(jīng)驗,提高解決問題的能力。
重點、難點
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
教學過程
一、復習提問
1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全
部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經(jīng)知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數(shù),因此,設師傅做了x天,則徒弟做(x+1)天,根據(jù)等量關系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現(xiàn)
由甲獨做10小時;
請你提出問題,并加以解答。
例如 (1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
四、小結
1.本節(jié)課主要分析了工作問題中工作量、工作效率和工作時間之
間的關系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
五、作業(yè)
教科書習題6.3.3第1、2題。
七年級數(shù)學上冊教案15
一、有理數(shù)的意義
1.有理數(shù)的分類
知識點:大于零的數(shù)叫正數(shù),在正數(shù)前面加上“﹣”(讀作負)號的數(shù)叫負數(shù);如果一個正數(shù)表示一個事物的量,那么加上“﹣”號后這個量就有了完全相反的意義;3,,5.2也可寫作+3,+,+5.2;零既不是正數(shù),也不是負數(shù)。
2.數(shù)軸
知識點:數(shù)軸是數(shù)與圖形結合的工具;數(shù)軸:規(guī)定了原點、正方向和單位長度的直線;數(shù)軸的三元素:原點、正方向、單位長度,這三元素缺一不可,是判斷一條直線是否是數(shù)軸的根本依據(jù);數(shù)軸的作用:1)形象地表示數(shù)(因為所有的有理數(shù)都可以用數(shù)軸上的點表示,以后會知道數(shù)軸上的每一個點并不都表示有理數(shù)),2)通過數(shù)軸從圖形上可直觀地解釋相反數(shù),幫助理解絕對值的意義,3)比較有理數(shù)的大。篴)右邊的數(shù)總比左邊的數(shù)大,b)正數(shù)都大于零,c)負數(shù)都小于零,d)正數(shù)大于一切負數(shù)
3.相反數(shù)
知識點:只有符號不同的兩個數(shù)互為相反數(shù);在數(shù)軸上表示互為相反數(shù)的兩個點到原點的距離相等且分別在原點的兩邊;規(guī)定:0的相反數(shù)是0。
4.絕對值
知識點:一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點與原點的距離,數(shù)a的絕對值記作∣a∣;絕對值的意義:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),零的絕對值是零,即若a>0,則∣a∣=a.若a=0,則∣a∣=0.若a<0,則∣a∣=﹣a;絕對值越大的負數(shù)反而小;兩個點a與b之間的距離為:∣a-b∣。
二、有理數(shù)的運算
1.有理數(shù)的加法
知識點:有理數(shù)的加法法則:1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;2)異號兩數(shù)相加,①絕對值相等時,和為零(即互為相反數(shù)的兩個數(shù)相加得0);②絕對值不相等時,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;3)一個數(shù)和0相加仍得這個數(shù)。
加法交換律:a+b=b+a;加法結合律:a+b+c=a+(b+c)
多個有理數(shù)相加時,把符號相同的數(shù)結合在一起計算比較簡便,若有互為相反的數(shù),可利用它們的和為0的特點。
2.有理數(shù)的減法
知識點:有理數(shù)的'減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù),即a-b=a+(-b)。
注意:運算符號“+”加號、“-”減號與性質(zhì)符號“+”正號、“-”負號統(tǒng)一與轉(zhuǎn)化,如a-b中的減號也可看成負號,看作a與b的相反數(shù)的和:a+(-b);一個數(shù)減去0,仍得這個數(shù);0減去一個數(shù),應得這個數(shù)的相反數(shù)。
3.有理數(shù)的加減混合運算
知識點:有理數(shù)的加減法混合運算可以運用減法法則統(tǒng)一成加法運算;加減法混合運算統(tǒng)一成加法運算以后,可以把“+”號省略,使算式變得更加簡潔。
4.有理數(shù)的乘法
知識點:乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;任何數(shù)和0相乘都得0。
幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定;當負因數(shù)有奇數(shù)個時,積為負;當負因數(shù)有偶數(shù)個時,積為正。幾個數(shù)相乘,有一個因數(shù)為0,積就為0。
乘法交換律:ab=ba乘法結合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc
5.有理數(shù)的除法
知識點:除法法則1:除以一個數(shù)等于乘上這數(shù)的倒數(shù),即a÷b==a(b≠0即0不能做除數(shù))。
除法法則2:兩數(shù)相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數(shù)都得0。
倒數(shù):乘積是1的兩數(shù)互為倒數(shù),即a=1(a≠0),0沒有倒數(shù)。
注意:倒數(shù)與相反數(shù)的區(qū)別
6.有理數(shù)的乘方
知識點:乘方:求n個相同因數(shù)的積的運算。乘方的結果叫冪,an中,a叫做底數(shù),n叫做指數(shù)。
乘方的符號法則:正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù);0的任何次冪都為0。
7.有理數(shù)的混合運算
知識點:運算順序:先乘方,再乘除,最后算加減,遇到有括號,先算小括號,再中括號,最后大括號,有多層括號時,從里向外依次進行。
技巧:先觀察算式的結構,策劃好運算順序,靈活進行運算。
【七年級數(shù)學上冊教案】相關文章:
七年級上冊數(shù)學教學教案01-07
七年級數(shù)學上冊教案01-11
七年級上冊數(shù)學教案01-16
七年級上冊數(shù)學角教案09-26
七年級數(shù)學上冊教案01-17
[精選]七年級上冊數(shù)學教案07-02
七年級下數(shù)學教案上冊12-10
七年級上冊數(shù)學教案05-06
數(shù)學上冊教案01-15
人教版七年級數(shù)學上冊教案01-27