五年級上冊數(shù)學點陣中的規(guī)律教案(精選11篇)
作為一位兢兢業(yè)業(yè)的人民教師,常常需要準備教案,教案是實施教學的主要依據(jù),有著至關(guān)重要的作用。那么你有了解過教案嗎?下面是小編為大家收集的五年級上冊數(shù)學點陣中的規(guī)律教案,歡迎大家分享。
五年級上冊數(shù)學點陣中的規(guī)律教案 1
教學目標:
1.能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系;
2.發(fā)展歸納與概括的能力;
3.了解數(shù)學發(fā)展的歷史,感受數(shù)學文化的魅力。
教學重點:
引導(dǎo)學生發(fā)現(xiàn)和概括點陣中的規(guī)律
教學難點:
尋求多種解決問題的方法,體會圖形與數(shù)的聯(lián)系
教學過程:
一、創(chuàng)設(shè)情境,生成問題
1.觀察圖形中的規(guī)律
上課前,同學們憑借靈敏的聽力找到了規(guī)律(板書:規(guī)律),現(xiàn)在,老師來考考你們的眼力。請看屏幕,仔細觀察,你能從這一組圖形中發(fā)現(xiàn)規(guī)律嗎?
。ǔ鍪净脽羝3)3:生觀察說規(guī)律,可提示,師總結(jié))
2.觀察一組數(shù)的規(guī)律。
看來,從不同的角度觀察就會有不同的發(fā)現(xiàn),同學們的眼力真不錯!讓我們繼續(xù),(出示幻燈4)你能從這一組數(shù)中發(fā)現(xiàn)規(guī)律嗎?(1、4、9、16、25 …)
如果有困難不能出色完成,那我們今天就來一起研究,從而導(dǎo)入
3.出示點子圖
同學們,這一組數(shù)中其實還隱藏著其他的規(guī)律,只是僅憑觀察這幾個數(shù)不太容易發(fā)現(xiàn)。那我們該怎么辦呢?(生想辦法)
好主意!為了幫助同學們更直觀、更深入地研究這一組數(shù),老師把它們分別畫成了一種最簡單的圖形——點(幻燈5出示課本97頁主題圖),如果我們能發(fā)現(xiàn)這幾個點子圖之間的變化規(guī)律,就可以發(fā)現(xiàn)這一組數(shù)中隱藏的規(guī)律了。讓我們馬上開始!
二、探索交流,解決問題
1.滲透不同的觀察方法
。1)仔細觀察,想一想,這幾個點子圖之間究竟有什么變化呢?把你的發(fā)現(xiàn)說給同桌聽;老師并用幻燈片6展示。
(2)指名說怎么觀察的?它們之間有什么變化?
。ǜ卑鍟簷M豎看、斜著看、拐彎看)
(3)設(shè)問,那第5個點陣有多少個點?請畫出此圖形。
2.小組探究
同學們都很會思考,從不同的角度觀察到了不同的'變化,為了更清晰、更準確的感受這些變化,現(xiàn)在,我們把觀察和動手結(jié)合起來,小組合作,選擇一種觀察順序,用線條分一分這幾個圖中的點,然后根據(jù)劃分的結(jié)果寫出算式來表示這幾個數(shù)。最后想一想,你們從中發(fā)現(xiàn)了什么規(guī)律。聽明白了嗎?好的,現(xiàn)在請小組負責,觀看點子圖,馬上開始你們的合作研究;再次出示幻燈片6。
合作任務(wù)
1.選擇一種觀察順序,用線條分一分這幾個圖中的點。
2.根據(jù)劃分的結(jié)果寫出算式來表示這幾個數(shù)。
3.想一想,你們從中發(fā)現(xiàn)了什么規(guī)律?
1=()4=()9=()16=()
。1)學生分組探究,師巡視
。2)在展臺上展示交流。(哪個小組先來匯報你們的合作成果?)
①生展示分法、算式和規(guī)律——其他組補充——總結(jié)規(guī)律
、趯W生說算式師板書
、弁卣筧×a
第5個點子圖是什么樣的,應(yīng)該是哪個數(shù)?出示片7,用前面的觀察方法,再討論(副板書5×5)第10個呢?
后兩種:下一個圖形的算式是什么?(副板書下一個圖形的算式)
算一算結(jié)果是25嗎?
④(出示幻燈片8)原來問題還可以這樣想:同一問題有不同的思路和解決方法!
3.小結(jié)
同學們真是太能干了,不僅發(fā)現(xiàn)了新的規(guī)律,還能用規(guī)律推測出后面的數(shù)?梢姡銈儾粌H聽力和眼力好,研究能力和表達能力更是非常的高。
4.揭示點陣
那么,同學們,在尋找這一組數(shù)的規(guī)律時,是什么幫助了我們?(點子圖)是的,像今天我們用到的這種排列很有規(guī)律的點子圖在數(shù)學上又叫點陣。(板書:點陣中的規(guī)律)
點陣中的規(guī)律可以幫助我們更直觀、更方便的研究一個數(shù)或者一組數(shù)。早在兩千多年前,希臘的數(shù)學家們就已經(jīng)利用點陣來研究數(shù)了。還有一點一定要告訴你們,剛才我們研究的這組點陣正是當年的數(shù)學家們曾經(jīng)研究過的,不知不覺中竟然當了一回數(shù)學家,感覺特好吧?這的確是一件值得我們自豪的事情。
三、鞏固應(yīng)用,內(nèi)化提高
。ㄒ唬┰囈辉
怎么樣?同學們?用點陣來研究數(shù)有趣吧?讓我們繼續(xù)這項有趣的研究。
1.觀察下列點陣,你能根據(jù)規(guī)律畫出下一個圖形嗎?
請看屏幕,這是一組什么形狀的點陣?仔細觀察這一組點陣,你能根據(jù)規(guī)律畫出下一個圖形嗎?(請看試一試,同學們用水彩筆涂出下一個圖形;可出示幻燈片9來檢查學生是否畫的正確)
生畫——展示:說明為什么這樣畫?(有不同的想法嗎)
2.下面的點陣分別代表了哪個數(shù)?請你用一組有規(guī)律的算式表示這幾個數(shù)。
這是一組什么形狀的點陣?下面的點陣分別代表了哪個數(shù)?你能用一組有規(guī)律的算式表示這幾個數(shù)嗎?(請看試一試,出示幻燈片10,我們比一比,哪位同學寫的又對又快。)
生做——展示算式——拓展下一個,你能畫出地5個圖形,再來研究第4個圖形。
。ㄍ卣梗┠氵有什么發(fā)現(xiàn)?展示幻燈片11。
除了這種方法,你還有其它研究方法?(學生思考后,可以出示幻燈片12)
(二)拓展延伸
出示梯形和螺旋形點陣:除了正方形、三角形和長方形點陣之外,還有這樣的點陣,什么形狀的?
我們來看書本98頁的練一練第1題,學生先做后,出示幻燈片13來檢查。
對,同學們,在生活中你見過或感受過點陣嗎?你見過哪些點陣?(指生說)其實生活中的點陣還有很多,同學們請看(出示幻燈片14)點陣以其獨特的魅力被人們廣泛的應(yīng)用于生活,這些點陣中也隱藏著有趣的規(guī)律。只是課上的這40分鐘太有限了,不過,有興趣的同學課下可以繼續(xù)研究。
四、回顧整理,反思提升
1.同學們,時間過的真快,馬上要下課了,想一想,在這節(jié)課中,你有什么收獲?(生談收獲)
2.你們總結(jié)的真好!同學們,在生活中,規(guī)律是普遍存在的,所以,老師希望每位同學都能從現(xiàn)在開始做個有心人,在以后的生活和學習中,多觀察、多思考,繼續(xù)去發(fā)現(xiàn)更多、更奇妙的規(guī)律。
板書設(shè)計:
點陣中的規(guī)律
1、正方形點陣
2、長方形點陣
3、三角形點陣
4、其它點陣
小結(jié):在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系,感受數(shù)學文化的魅力,同一問題有不同的思路和解決方法。
五年級上冊數(shù)學點陣中的規(guī)律教案 2
教學內(nèi)容:
北師大版小學數(shù)學五年級上冊。(教科書第82、83頁。)
課標分析:
本節(jié)課的主要內(nèi)容是使學生能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系,發(fā)展學生的歸納與概括的能力,滲透數(shù)學建模的思想,從中感受數(shù)學文化的魅力。
教材分析:
本課的內(nèi)容是獨立成篇的,這節(jié)課與本單元的其它知識之間沒有必然的前后聯(lián)系,是一節(jié)相對獨立的數(shù)學活動課。教材提供的學習內(nèi)容對于五年級的學生來說比較容易。但本課知識雖然簡單,卻是幫助學生建立數(shù)學模型的好題材,即是讓學生能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,又是讓學生體會到圖形與數(shù)的聯(lián)系,發(fā)展學生歸納與概括能力,滲透數(shù)學建模思想。
學生分析:
1、學生的知識基礎(chǔ)
五年級學生在數(shù)的方面,已經(jīng)認識了自然數(shù)和整數(shù),倍數(shù)因數(shù),奇數(shù)偶數(shù),質(zhì)數(shù)合數(shù),小數(shù)、分數(shù)等。在形的方面,對長方形、正方形、平行四邊形,三角形,梯形的特征也有了深刻的認識。但是學生對利用圖形研究數(shù),尋找數(shù)和圖形之間的聯(lián)系,還有困難。學生對線圍成的基本圖形有深刻的認識,但是點陣中的幾何圖形,只有點,沒有線,學生要利用自己的想象加以補充和延伸,這對學生來說會感覺比較陌生。
2、學生的能力基礎(chǔ)
學生在一年級學過找規(guī)律填數(shù),二年級學過按規(guī)律接著畫,四年級學過探索圖形的規(guī)律。因此五年級學生具備一定的觀察能力、抽象概括能力、邏輯推理能力等。然而小學生的思維特點是從具體形象思維逐步向抽象思維過渡,這種抽象邏輯思維在很大程度上仍然依靠感性經(jīng)驗的支持。而這節(jié)課完全是數(shù)學思想、數(shù)學方法的教學,極為抽象,因此對部分學生來說還是會感覺有點困難。
教學目標:
1.能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系。
2、培養(yǎng)學生推理、觀察、歸納和概括能力。
3、感受“數(shù)形結(jié)合”的神奇之美,并獲得“我能發(fā)現(xiàn)”之成功體驗。
教學重點:
探究發(fā)現(xiàn)點陣中的規(guī)律。
教學難點:
總結(jié)概括規(guī)律。
教學準備:
課件,五子棋,磁扣等。
教法學法:
1、教師教學方法:讓學生獨立或合作式探究規(guī)律,鼓勵學生有自己的發(fā)現(xiàn)、有不同的發(fā)現(xiàn)。盡量減少教師的介入
2、學生學習方法:大膽讓學生畫一畫、擺一擺、算一算,讓學生多角度探究規(guī)律,充分感受美圖美思
教學過程:
一、展示圖片,引出課題
1、展示圖片,(投影)今天老師給大家?guī)砹藥追鶊D片,請同學們欣賞。
師:這些圖片有什么特點?
生:好像都是由點組成的。
師:是呀,不要小看了這樣一個小小的點,點是幾何圖形中最基本的圖形,許許多多的點按照一定的規(guī)律排列起來就構(gòu)成了點陣。
早在2000多年前,古希臘的數(shù)學家們就是從這樣一個小小的點開始研究,并且發(fā)現(xiàn)了有許多個這樣的點組成的點陣中許多有趣的規(guī)律。這節(jié)課,我們也來嘗試研究點陣的規(guī)律。(板書課題——點陣中的規(guī)律)。
二、細心觀察,探求規(guī)律
1、出示正方形點陣,探索正方形點陣的規(guī)律。
A、第一個規(guī)律。
師:(出示點陣),這就是他們當時研究過的一組點陣,請大家用數(shù)學的眼光仔細觀察,思考這樣兩個問題:(出示思考題)(指名讀)
(1)每個點陣可以看成什么圖形?
。2)每個點陣中分別有多少個點?你是怎樣觀察出來的?
小組討論,指名回答。
師:每個點陣可以看成什么圖形?(正方形),同意嗎?
生1:我認為第一個點陣不能看成一個正方形,是一個圓形。
師:其他同學也同意他的觀點嗎?
師:其實第一個點陣雖然只是一個點,但是我們可以把它看成邊長是1的小正方形。是嗎?
師:每個點陣中分別有多少個點?
生2:第一個點陣有1個點,第二個點陣有4個點,第三個點陣有9個點,第四個點陣有16個點。
師:你能說一說你是怎么得到每個點陣中點的個數(shù)的`嗎?你是怎樣觀察出來的?
生:我是通過數(shù)出每個點陣中點的個數(shù)得到的。
師:誰還有不同的方法?有沒有更快一些的方法?
生:我是通過計算得到的。
師:能具體說一說是怎樣通過計算得到的嗎?
生:第一個點陣有1個點;第二個點陣橫著看,每行有2個點,有2行,共有2×2=4個點;第三個點陣每行有3個點,有3行,共有3×3=9個點;第4個點陣每行有4個點,有4行,共有4×4=16個點。
師:同學們現(xiàn)在你們發(fā)現(xiàn)正方形點陣的規(guī)律了嗎?點陣的序號與它的點的個數(shù)算式有沒有關(guān)系?有什么關(guān)系?如果用字母n來表示點陣的序號,那么正方形點陣點的個數(shù)是多少呢?
生:我們分析了前面幾個點陣圖的特點,認為在這個點陣圖中,點的個數(shù)的規(guī)律是:1×1,2×2,3×3,4×4,也就是n×n 師:這種數(shù)法真是又快又方便!照這樣下去,能不能根據(jù)你們的發(fā)現(xiàn)畫出第5個點陣呢?(學生畫,指名說,教師投影顯示)
師:第6個呢、第7個第100個點陣的點的個數(shù)都能瞬間求出來。也就是說:“是第幾個點陣,就用幾乘幾”(板書)
師:如果一個點陣它有81個點,它應(yīng)該是第幾個點陣?每行有幾個點?每列有幾個點?
。ㄟ@個畫點陣的過程雖然簡單,但體現(xiàn)了由數(shù)——形的轉(zhuǎn)換。培養(yǎng)了學生主動進行數(shù)形轉(zhuǎn)換的意識。)
B、第2個規(guī)律
師:剛才我們是怎樣觀察的?(橫著數(shù)和豎著數(shù))
正方形點陣還有沒有其它的觀察方法呢?能不能換個角度觀察?
“斜著看又可以得到什么新的與序號有關(guān)的算式呢?請同學們獨立思考,寫出算式,然后匯報!保ㄍ队埃
觀察并思考
。1)分別用算式表示每個點陣點的個數(shù)。
。2)你發(fā)現(xiàn)了什么規(guī)律?
學生匯報,教師板書
第1個:1=1
第2個:1+2+1=4
第3個:1+2+3+2+1=9
第4個:1+2+3+4+3+2+1=16
第N個:1+2+3+N++3+2+1
師:“誰發(fā)現(xiàn)什么規(guī)律呢?”
生:“如第2個點陣就從1加到2再加回來,第3個點陣就從1加到3再加回來,第4個點陣就從1加到4再加回來”。
師小結(jié):“第幾個點陣就從1連續(xù)加到幾,再反過來加回到1”這個規(guī)律。
剛才是橫豎數(shù),“第幾個點陣就是幾乘幾”。
C、第3個規(guī)律
師:剛才同學們發(fā)現(xiàn)了點陣中的兩個規(guī)律,這些點陣中還有其它的規(guī)律嗎?還能換個角度去思考嗎?(出示教材第82頁第(3)題圖),老師把第5個點陣中的點用五條折線劃分,這樣劃分后,看看你又有什么新發(fā)現(xiàn)呢?
師:我們把第1個折現(xiàn)內(nèi)的點看成第一個點陣,該用什么算式表示?其他呢?小組討論,列出算式,全班匯報。
小組代表匯報。
生:(總結(jié))每用折線畫一次后,點陣中的個數(shù)是
1=1 1+3=4 1+3+5=9 1+3+5+7=16
師:(總結(jié))這樣劃分后,點陣中的規(guī)律是:1,1+3,1+3+5,1+3+5+7,師:第1個點陣是1,第2個點陣是在第1個的基礎(chǔ)上多3個,第3個點陣呢? 有的學生可能說:“這次都是奇數(shù)相加!
教師問:“從奇數(shù)幾加起?加幾個?是隨意的幾個奇數(shù)相加嗎?”
通過這樣的提問,引導(dǎo)學生說出“第幾個點陣就從1開始加幾個連續(xù)奇數(shù)”。
師:真了不起。這種劃分方法,我們可以叫做“折線劃分法”。
第幾個點陣,就是從1開始加幾個連續(xù)奇數(shù)。
通過研究點陣,我們發(fā)現(xiàn)這組正方形點陣中有很多規(guī)律。這3種規(guī)律是從不同的角度觀察出來的,無論你從什么角度去觀察,得到的結(jié)論都與它的序號有關(guān)系,所以我們以后再研究點陣的時候,都要想一想跟它的序號有什么關(guān)系,這樣才能更簡單。
。ㄔ谶@里,教師不是讓學生發(fā)現(xiàn)規(guī)律就結(jié)束了,而是讓學生活學活用這些規(guī)律。讓學生體會到我們剛才發(fā)現(xiàn)的正方形點陣中的規(guī)律,其實就是一個完全平方數(shù)的規(guī)律,它可以應(yīng)用到所有的完全平方數(shù)。)
剛才這3種方法,哪一種更簡便?你更喜歡哪一種?那么我們再研究正方形點陣的時候,用哪一種更簡便?但點陣是豐富的,多變的,不僅只有正方形點陣,還有其他圖形的點陣。這時,我們就需要開拓自己的思維,多想一些方法來研究它們與序號之間的關(guān)系。有沒有興趣再研究其他圖形的點陣?
。ㄔ趧偛诺男抡n教學的環(huán)節(jié)中,學生經(jīng)歷了觀察、思考、合作、交流、表達等過程,培養(yǎng)了觀察能力、想象能力、概括能力。并深刻體驗到數(shù)與形,數(shù)與式,式與式之間的聯(lián)系,培養(yǎng)學生利用數(shù)形結(jié)合的思想來解決問題的意識和能力。)
三、牛刀小試
1. (課件出示教材第83頁試一試第1題)師:你們能用剛學過的幾種方法中發(fā)現(xiàn)這個點陣的規(guī)律嗎?
生:豎排×橫排:1×2,2×3,3×4,4×5 師:與它們的序號有什么關(guān)系?都是序號和它后面相鄰的兩個自然數(shù)的乘積。在點子圖上畫出第5個點陣。
小組交流,研究:上面的點陣還有其他的規(guī)律嗎?
生:(1)兩個兩個數(shù):1×2,3×2,6×2,10×2,15×2 (2)斜著一層一層數(shù):1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.師:同學們真善于發(fā)現(xiàn)和創(chuàng)造規(guī)律。除了正方形和長方形點陣外,還有很多其它形狀的點陣,我們研究他們,同樣會有很大的收獲。看看,這是一組什么形狀的點陣?(課件出示試一試第2題三角形點陣圖)你能用一層一層數(shù)的方法,表示你發(fā)現(xiàn)的規(guī)律嗎?展示,根據(jù)你發(fā)現(xiàn)的規(guī)律畫出第五個點陣。
生;1,1+2,1+2+3,1+2+3+4
師:其他同學看明白了嗎?有什么規(guī)律?(第幾個點陣,就從1加到幾。)
上面的點陣還有其他的規(guī)律嗎?學生思考,指名說。(投影顯示)
四、興趣優(yōu)在:(課件出示教材第83頁練一練)
第2題:按規(guī)律畫出下一個圖形。
師:這道題就象梅花樁,指第一個,走了幾個梅花樁?
生:3個。
師:指第二個,共走了幾個梅花,增加幾個樁?
生:7個,增加了4個。
師:指第三個,共走了幾個梅花樁,又增加了幾個樁?
生:13個,又增加了6個。
師:如果再往下走,你們想想會再多走幾個樁,你能寫出算式嗎?寫完算式,學生自己獨立畫出點陣。小組合作,討論點陣中蘊涵的規(guī)律,然后匯報交流。
生:交流,探索總結(jié)規(guī)律
。ㄟ@一題與前幾個題區(qū)別很大,前幾題的點陣可以看作規(guī)則的幾何圖形,這一題點陣圖不規(guī)則,要畫出下一個圖形,既要抓住數(shù)量的變化,又要抓住形狀的變化。進一步體會到數(shù)形結(jié)合的重要。)
五、知識拓展
欣賞生活中的點陣圖片。思考:生活中有哪些地方運用點陣的知識?(座位、站排做操、樓房的窗子等。
師:點陣不只是點,很多有規(guī)律的排列,都可以看成點陣。
投影跳棋、圍棋、十字繡、花壇里的鮮花、水晶燈等圖片。
六、課堂小結(jié)
師:同學們今天學習了這么多的點陣,有沒有收獲,哪些收獲?
七、課后操作
自創(chuàng)新的點陣圖,并說出點陣規(guī)律。
五年級上冊數(shù)學點陣中的規(guī)律教案 3
教學內(nèi)容:
北師大版小學數(shù)學五年級上冊第82——83頁的內(nèi)容。
教學目標:
1、結(jié)合具體的圖形,明確什么是“點陣”,了解點陣的基本知識。
2、能在具體的觀察活動中,發(fā)現(xiàn)點陣中隱藏的規(guī)律,體會圖形與數(shù)的聯(lián)系。
3、培養(yǎng)學生觀察、概括與推理的能力。
4、了解數(shù)學發(fā)展的歷史,感受數(shù)學文化的魅力。
教學重點:
通過觀察活動,引導(dǎo)學生探索發(fā)現(xiàn)“點陣”中隱藏的規(guī)律。
教學難點:
能從不同的角度觀察到點陣圖形的不同排列規(guī)律,并能把觀察到的規(guī)律用算式表示出來。
教學準備:
。◣煟┒嗝襟w課件;(生)彩筆。
教學過程:
一、談話引入
。ɡ蠋熢诤诎迳袭孅c)今天給大家請來了一位圖形朋友——點,不要小看了這個小小的點,早在2000多年前,古希臘的數(shù)學家們就是從這樣一個小小的點開始研究,發(fā)現(xiàn)了由許多個這樣的點組成的點子圖形中的規(guī)律,還給這些圖形取了一個好聽的名字,叫點陣。同學們想不想過一把當數(shù)學家的癮,自己來尋找這些規(guī)律?今天,我們就一起來探究點陣中隱含的規(guī)律。(板書課題:點陣中的規(guī)律)
二、探究正方形點陣中的規(guī)律
1、探究正方形點陣的規(guī)律。
。1)我們一起來看看數(shù)學家們當年研究的點陣圖,邊看邊說出各個點陣的點子數(shù)。
教師依次出示前四個正方形點陣圖,并逐步引導(dǎo)學生想像、猜測:下一個點陣圖會是什么樣子呢?
。S著點陣圖的依次出現(xiàn),學生的思維逐漸活躍,當?shù)谌齻點陣圖出現(xiàn)的時候,學生已經(jīng)忍不住地說出了點數(shù)。說明學生已經(jīng)發(fā)現(xiàn)了正方形點陣中的規(guī)律。但這時,教師沒有急于讓學生發(fā)表自己的看法,而是給學生留出了完善自己想法的時間,同時也暗示學生:規(guī)律的呈現(xiàn)不能依靠一個或幾個圖形來歸納,應(yīng)該有耐心地繼續(xù)自己的觀察活動。)
。2)除了能說出各個點陣的點數(shù)之外,仔細觀察點陣圖:你還有什么其它的發(fā)現(xiàn)?
。▽W生能夠發(fā)現(xiàn)各個點陣的形狀是正方形的,還能用1×1、2×2、3×3、4×4這樣的算式來表示每個點陣的點數(shù)。)
。3)根據(jù)剛才發(fā)現(xiàn)的規(guī)律,想:第五個點陣是什么樣子,獨立畫出來,并用算式表示點數(shù)。
(學生獨立畫出第五個5×5的點陣圖)
。4)思考:照這樣的規(guī)律繼續(xù)畫下去,第100個點陣的點數(shù)如何用算式來表示?第n個呢?
。ńY(jié)合發(fā)現(xiàn)的規(guī)律,引導(dǎo)學生逐步完善自己的想法,建立總結(jié)正方形點陣規(guī)律的模型。)
小組討論:你覺得每個正方形點陣的點子總數(shù)與什么有關(guān)系?
。▽W會用簡單的語言表述自己的想法,使得初步的形象感知得到提升)
小結(jié):每個正方形點陣的點子總數(shù)可以看作是一個相同數(shù)字相乘的積,這個數(shù)字與點陣的序號有關(guān),與每個正方形點陣每排的點子數(shù)也有關(guān)系。
2、剛才我們研究了一組正方形點陣中隱含的規(guī)律,那么對于同一個點陣來說,如果劃分的方法不同,所呈現(xiàn)的規(guī)律也就不同。
(1)請大家仔細觀察第五個正方形點陣中點的劃分方法,你能發(fā)現(xiàn)什么規(guī)律?
學生會有如下發(fā)現(xiàn)
、偈怯谜劬劃分開的。
②每條線內(nèi)的點分別是1、3、5、7、9。
、圻@個正方形點陣的點數(shù)就可以表示為:1+3+5+7+9=25。
(2)如果把每條線所包圍的點子數(shù)記下來,如何用算式來表示?
第一條線:1 = 1;
第二條線:1+3 = 4;
第三條線:1+3+5 = 9;
第四條線:1+3+5+7 = 16;
第五條線:1+3+5+7+9 = 25;
。3)每條線所包圍的點子數(shù)與前面研究的`一組正方形點陣的點子數(shù)有什么關(guān)系?(正好是第一到第五個點陣的點子數(shù)。)
。ǖ诙、三個問題需要老師引導(dǎo),學生自己難以發(fā)現(xiàn),尤其是第三個問題,學生很難想到它們和開始時依次出現(xiàn)的幾個正方形點陣的點數(shù)之間的關(guān)系。當學生想不到這種聯(lián)系時,是否一定要引導(dǎo)?)
。4)思考:表示這個正方形點陣的點數(shù)的算式有什么特點?
。ㄟ@個點陣的點子總數(shù)可以看作是連續(xù)奇數(shù)的和。)
。5)如果按這樣的劃分方法劃分第六個正方形點陣,它的點數(shù)該如何表示?
1+3+5+7+9+11=36;
。6)前面老師是把這個5×5的正方形點陣用折線進行了劃分,你們還有哪些不同的劃分的方法?在用算式表示上有什么規(guī)律?
學生的劃分有以下幾種
、贆M向劃分:用算式表示為5+5+5+5+5;
、谪Q向劃分:用算式表示為5+5+5+5+5;
、坌毕騽澐郑河盟闶奖硎緸1+2+3+4+5+4+3+2+1;
至于前面兩種方法,都可以簡單地表示為:5×5;重點引導(dǎo)學生討論第三種劃分方法,觀察這個算式,你們發(fā)現(xiàn)了什么?
學生的發(fā)現(xiàn)如下
算式里的數(shù)是5;
從1開始加到5再加回到1;
這個算式是兩邊對稱的;
這個點陣的點數(shù)是中間那個數(shù)字5乘5的積;
教師引導(dǎo):照這樣的規(guī)律類推,第六個正方形點陣的點數(shù)如何表示?第9個呢?第n個呢?
。ㄔ谶@里把尋找不同劃分方法的任務(wù)交給學生,既是學生前面探究過程思維的延續(xù),又體現(xiàn)了學生學習的自主性,還用另一種方式解讀了“練一練”中的第一題。培養(yǎng)了學生從不同的角度去發(fā)現(xiàn)問題,總結(jié)概括規(guī)律的能力。)
三、延伸應(yīng)用,形成策略
1、除了我們剛才研究的正方形點陣,請大家猜猜看,還會有什么形狀的點陣呢?
(學生列舉了長方形點陣、三角形點陣、圓形點陣、橢圓形點陣等等。)
2、請大家嘗試運用前面學會的方法探究長方形點陣規(guī)律。
。1)小組合作研究:如何用算式表示每個長方形點陣的點子數(shù)?
學生通過討論很快達成共識
1×2;2×3;3×4;4×5;
。2)請你獨立畫出第五個長方形點陣并用算式表示出點數(shù)。
。▽W生獨立畫圖并寫出算式,互相交流。)
算式表示為:5×6;
。3)思考討論:你們覺得自己所寫的算式中的數(shù)字與圖形中的點子之間有什么關(guān)系?
(學生的發(fā)現(xiàn)為:乘法算式中的第二個因數(shù)總是比第一個因數(shù)多1,第一個因數(shù)是長方形點陣的豎排點數(shù),第二個因數(shù)是長方形點陣的橫排點數(shù)。并沒有發(fā)現(xiàn)第一個因數(shù)與點陣序號間的關(guān)系,因此,當要求他們寫出18個點陣的點數(shù)時,出現(xiàn)了兩種不同的答案:17×18、18×19。在爭論各自的理由時,學生的注意力才聯(lián)系到了點陣的序號與算式的關(guān)系,從而確定了正確答案。)
。4)照這樣繼續(xù)寫,你能寫出第n個長方形點陣的點數(shù)嗎?
學生可以很順利地寫出:n×(n+1)。
3、看來對于任何一個點陣,只要我們認真觀察研究,總能發(fā)現(xiàn)其獨特的規(guī)律。在小組內(nèi)研究三角形點陣中的規(guī)律,要求
(1)個人思考活動:觀察給出的四個三角形點陣的規(guī)律,畫出第五個三角形點陣。
。2)小組討論:對自己畫出的第五個三角形點陣進行劃分,你能想到哪些不同的劃分方法?分別用算式表示點數(shù)。
。▽W生活動)
全班交流
劃分一:橫向劃分,1+2+3+4+5=15;
劃分二:豎向劃分,1+2+3+4+5=15;
劃分三:斜向劃分,1+2+3+4+5=15;
劃分四:折線劃分,1+5+9=15;
。▽τ谇懊娴娜N劃分方法,都在我的預(yù)設(shè)之內(nèi),學生到此,已經(jīng)很輕松地用語言表述出自己的想法:這樣的三角形點陣的點數(shù)是從1開始的連續(xù)自然數(shù)的和。而對于第四種劃分方法,是我沒有想到的。有一個孩子卻用非常強烈地要求,表達了自己的這種劃分方法,并且說出了這個算式依次遞加4的規(guī)律。)
4、同學們真了起!真正具有未來數(shù)學家的風范,用自己的聰明才智,發(fā)現(xiàn)并總結(jié)了各個不同的點陣圖中隱藏的規(guī)律。那么你覺得應(yīng)該從哪些方面來探究點陣的規(guī)律?
學生交流
仔細觀察點陣的形狀;
數(shù)清每一行的點子數(shù);
看清前后兩個點陣的變化……
。ㄔ谶@里不需要學生說出多么專業(yè)的、深奧的數(shù)學原理,只是引導(dǎo)學生對自己探究性學習方法的一個總結(jié),盡管語言可能不夠簡練,總結(jié)不夠到位,只要學生用自己的語言在表述,就是對學生思維訓(xùn)練的一個提升,一種飛越。)
四、課堂總結(jié)
1、點陣的知識在生活中有著廣泛的應(yīng)用,比如北京奧運會開幕式上的“擊缶表演”、“太極表演”等,都是把一個人看作了一點,來排列有規(guī)律的隊形。你還知道什么地方運用了點陣的相關(guān)知識?
學生交流
五子棋、閱兵式的方隊、節(jié)日的花壇……
2、課后繼續(xù)搜集點陣的相關(guān)資料,下節(jié)課繼續(xù)交流。
。ㄔ谶@里,把學生的課堂學習延伸到生活,鏈接到學生已有的相關(guān)生活經(jīng)驗,然后讓學生在生活中繼續(xù)尋找哪里用到點陣的知識,體現(xiàn)了數(shù)學與生活的密切聯(lián)系,數(shù)學來源于生活,又應(yīng)用于生活。)
五年級上冊數(shù)學點陣中的規(guī)律教案 4
教學目標:
知識與技能:能觀察發(fā)現(xiàn)點陣中的規(guī)律,體會“圖形與數(shù)”的聯(lián)系。
過程與方法:發(fā)展歸納和概括的能力。
情感態(tài)度與價值觀:感受“數(shù)形結(jié)合”的神奇之美,并獲得“我能發(fā)現(xiàn)”之成功體驗。
教學重點:
探究發(fā)現(xiàn)點陣中的規(guī)律。
教學難點:
獨立發(fā)現(xiàn)同一點陣中不同的規(guī)律。
教學過程:
(教學過程的表述不必詳細到將教師、學生的所有對話、活動逐字記錄,但是應(yīng)該把主要教學環(huán)節(jié)、教師活動、學生活動、設(shè)計意圖很清楚地再現(xiàn)。)
一、創(chuàng)設(shè)問題情境
指導(dǎo)學生觀察所提供圖
形的基本形狀。
1、提供的四個圖形的均是三角形,第一個圖形除外。
板書:1點字的個數(shù)是如何增加的?
2、觀察四個圖形均是正方形(第一個除外)你能寫出算式嗎?
1×1 2×2 3×3 4×4 □×□
3、第三、四組的四個圖形請示去自己去探索,發(fā)現(xiàn)規(guī)律。
觀察圖形,思考,反饋。
學生探索、發(fā)現(xiàn)。
設(shè)計意圖:隨著點陣圖的依次出現(xiàn),學生的思維逐漸活躍,當?shù)谌齻點陣圖出現(xiàn)的時候,學生不用數(shù),已經(jīng)忍不住地說出了點數(shù)。說明學生已經(jīng)發(fā)現(xiàn)了這組正方形點陣中的規(guī)律。但這時,教師沒有急于讓學生發(fā)表自己的看法,而是給學生留出了完善自己想法的時間,同時也暗示學生:規(guī)律的呈現(xiàn)不能依靠一個或幾個圖形來歸納,應(yīng)該有耐心地繼續(xù)自己的觀察活動。
二、小組合作探究。
指導(dǎo)學生觀察前后圖
學生觀察提供的第一組點字圖,交流點字的個數(shù)是如何增加的,然后用算式表示出來。
學生觀察第二組四個圖形,點字的個數(shù)有什么變化,在小組內(nèi)說一說,然后用算式表示出來。
學生獨立觀察思考這兩組圖形點不變化的情況,有什么規(guī)律。
引導(dǎo)學生觀察所給圖形的基本形狀及點字變化情況。
學生觀察、思考、匯報。學生談體會
設(shè)計意圖:讓學生尋找正方形點陣的不同劃分方法,把教材分散處理的關(guān)于正方形點陣的不同劃分方法集中探究,便于學生思維的延續(xù)和拓展,不至于出現(xiàn)思維上的斷層。這樣設(shè)計既符合學生的探究心理和學習習慣,又給學生提供了自主探究的空間,體現(xiàn)了學生學習的自主性,還用另一種方式解讀了“練一練”中的第一題。培養(yǎng)了學生從不同的角度去發(fā)現(xiàn)問題,總結(jié)概括規(guī)律的能力。
三、匯報交流質(zhì)疑問難。
學生通過觀察前后圖形中點的變化情況,從而推導(dǎo)出后續(xù)圖形點的數(shù)量。引導(dǎo)學生觀察前后圖形點的個數(shù)是如何增加的。
1、點字圖是三角形的點字個數(shù)后一層比前一層多。
2、正文形、長方形點子數(shù)是成倍增加。
3、第(4)組圖點子數(shù)是怎樣變化的。
4、指導(dǎo)學生觀察前后的算式。
僅觀察圖形并不能直接發(fā)現(xiàn)規(guī)律,并與圖形對應(yīng)起來。學生觀察讀圖,思考。
議論交流。
設(shè)計意圖:學生到此,已經(jīng)很輕松地用語言表述出自己的想法:這樣的三角形點陣的點數(shù)是從1開始的連續(xù)自然數(shù)的和。而對于第四種劃分方法,是我沒有預(yù)想到的。有一個孩子卻用非常強烈地要求,表達了自己的這種劃分方法,并且說出了這個算式依次遞加4的規(guī)律。我真的很慶幸給了他一個機會,他用如此精彩的回答回報了我,也許課堂教學永遠的魅力就在于這預(yù)設(shè)外的驚喜吧。
四、練習鞏固。
第1題,有兩小題都是根據(jù)圖形的變化的特點,推理出后續(xù)的圖形。
第二題,是觀察圖形排列的'變化
學生先獨立思考:各圖形點子個數(shù)是如何增加的,然后小組內(nèi)交流,最后全班進行交流。
學生補充完算式,找出規(guī)律再寫出一個算式來。
先讓學生獨立思考,然后組織學生進行交流。
通過這樣的觀察,也能知道后面圖形排列的特點,從而計算出后面圖形點的數(shù)量。
根據(jù)圖形變化發(fā)現(xiàn)這一變化規(guī)律。
學生獨立思考后小組交流。
學生觀察并找出其中規(guī)律。
設(shè)計意圖:在這里不需要學生說出多么專業(yè)的、深奧的數(shù)學方法,只是引導(dǎo)學生對自己探究性學習方法的一個總結(jié),盡管語言可能不夠簡練,總結(jié)不夠到位,只要學生是用自己的語言在表述自己的想法,就是對學生思維訓(xùn)練層次的一個提升,一種飛越。
五、總結(jié)概括
這節(jié)課你有什么收獲?講給同學們聽聽。
六、作業(yè)
1、練一練2題
2、你在生活中那里發(fā)現(xiàn)過有規(guī)律的東西?用你喜歡的方法記錄表示它們的規(guī)律。
學生思考,交談,總結(jié)。
設(shè)計意圖:把學生的課堂學習延伸到課外,鏈接到學生已有的相關(guān)生活經(jīng)驗,使得原本陌生的數(shù)學知識與學生的日常生活自然對接,體現(xiàn)了數(shù)學與生活的密切聯(lián)系。學生課后的自主設(shè)計作業(yè),給了學生極大的創(chuàng)造空間,真正體現(xiàn)數(shù)學來源于生活,又應(yīng)用于生活。
板書設(shè)計:
點陣中的規(guī)律
正方形數(shù)、相同數(shù)
連續(xù)奇數(shù)
連續(xù)自然數(shù)——倒加
1 =1×1 4 =2×2 =1+3 =1+2+1
9 =3×3 =1+3+5 =1+2+3+2+1
16 =4×4 =1+3+5+7 =1+2+3+4+3+2+1
25 =5×5 =1+3+5+7+9 =1+2+3+4+5+4+3+2+1
五年級上冊數(shù)學點陣中的規(guī)律教案 5
教學內(nèi)容
新世紀小學數(shù)學教材(北師大版)五年級上冊第五單元第四課時。
教學目標
1、結(jié)合具體的圖形,明確什么是“點陣”。
2、能在具體的觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系。
3、發(fā)展歸納與概括的能力。
4、了解數(shù)學發(fā)展的歷史,感受數(shù)學文化的魅力。
教學重點
直觀感知“點陣”的有序排列。
教學難點
發(fā)現(xiàn)“點陣”中隱含的規(guī)律,體會圖形與數(shù)的聯(lián)系。
教材分析
教材結(jié)合2000多年前希臘數(shù)學家們利用圖形研究數(shù)的情境,先引導(dǎo)學生直觀感知有序排列的點陣,再要求學生嘗試用算式的方法研究給出的四個點陣,從而歸納出這四個點陣所隱含的規(guī)律。然后利用知識的遷移特點,依次往后類推第五個點陣的圖形畫法及劃分方法,讓學生體會通過點陣研究數(shù)的形式是多種多樣的。
教學思想
教材設(shè)計本活動的目的旨在通過學生對生活中常見現(xiàn)象的觀察與思考,發(fā)現(xiàn)在點陣中前后圖形中點的變化規(guī)律,類推出后續(xù)圖形中點的數(shù)量和排列規(guī)律,學會推理、歸納和概括的學習方法,體會數(shù)學學習中舉一反三的教學思想。
教具準備
點陣圖片、多媒體課件等。
教學過程:
活動一:交流課前搜集的資料信息
1、對于數(shù)字的發(fā)明和發(fā)展過程,你都有哪些了解?
如:我們現(xiàn)在使用的數(shù)字是哪個國家的人發(fā)明的?
最初人們是怎樣計數(shù)的?
數(shù)字在使用過程中又增加了哪些功能?
你都了解數(shù)字的哪些特征?
……
2、阿拉伯數(shù)字的發(fā)明,是我們的記錄和計算更加方便,然而在表現(xiàn)一些數(shù)字的特征方面,圖形更加直觀。早在2000多年前,古希臘的數(shù)學家們就已經(jīng)利用一些有序排列的點子圖形來研究數(shù),發(fā)現(xiàn)和總結(jié)數(shù)的一些特征,因此人們又叫它“點陣”。
活動二: 研究點陣中的規(guī)律
1、認識“點陣”。
。1)出示有序排列的三個點陣,引導(dǎo)學生觀察并思考:
下面三個點子圖中各有幾個點?在排列上有什么特點?
( 三個點陣按 1、4、9的`順序排列)
。2)你能不能嘗試畫出第四個圖形、第五個圖形?
學生獨立思考并在小組內(nèi)交流畫法。(16個點、25個點)
。3)像這樣有序排列的點子圖在數(shù)學上又叫它“點陣”。點陣可以分為方形點陣、三角形點陣、螺旋點陣等幾種形式。
2、探究規(guī)律。
(1)大家都能用數(shù)字來表示各個點陣中點的個數(shù),能不能嘗試用算式來表示點陣中點的個數(shù),從中發(fā)現(xiàn)一些隱藏的規(guī)律?(小組內(nèi)交流)
(2)展示:第一個——1×1=1
第二個——2×2=4
第三個——3×3=9
第四個——4×4=9
第五個——5×5=25
小結(jié):每個點陣的點子數(shù)可以看作是相同的數(shù)字相乘。
。3)其實通過圖形來研究數(shù)的形式是多種多樣的。請同學們仔細觀察點陣中點的劃分方法,你能發(fā)現(xiàn)什么規(guī)律?
。ǔ鍪镜谖鍌點陣圖,多媒體課件分別按照1個點、3個點、5個點……的遞加規(guī)律演示)
(4)交流總結(jié):
1 =1
1+3 =4
1+3+5 =9
1+3+5+7 =16
1+3+5+7+9 =25
小結(jié):按照劃分方法這個點陣的點子數(shù)可以看作是連續(xù)奇數(shù)的和。
。5)你還有哪些劃分的方法?嘗試說明理由。
(學生自由討論交流)
活動三:延伸應(yīng)用
教材第83頁“試一試”中的1、2兩題。
學生自主探索,討論交流。
課堂總結(jié)
1、這節(jié)課你有什么收獲?
2、除了以上方形點陣、三角形點陣以外,你還見過其他形式的點陣嗎?課后繼續(xù)調(diào)查、搜集并研究其規(guī)律。
隨堂檢測題(10分)
1、按下面的方法劃分點陣中的點,并填寫算式。(圖略)
1=1 4=1+2+1 9= 16=
2、觀察已有的幾個圖形,按規(guī)律畫出下一個圖形。(圖略)
板書設(shè)計
點陣中的規(guī)律
第一個——1×1=1
第二個——2×2=4
第三個——3×3=9
第四個——4×4=9
第五個——5×5=25
教學反思
修改意見
五年級上冊數(shù)學點陣中的規(guī)律教案 6
一、談話引入
師:從小我們就學數(shù)數(shù)、用數(shù)字,那么對于數(shù)字的發(fā)明和發(fā)展過程,你們都哪些了解?(學生交流課前搜集的相關(guān)信息)
生1:古時候人們用石子來計數(shù),比如打一只兔子就擺一塊石子。
生2:還有用繩子打結(jié)的,有幾個人就打幾個結(jié)。
生3:我知道我們現(xiàn)在用的數(shù)字是印度人發(fā)明的,從阿拉伯傳到我國的,所以叫阿拉伯數(shù)字。
師:大家了解的信息真不少!阿拉伯數(shù)字的發(fā)明,使我們的記錄和計算更加方便,但是在表現(xiàn)數(shù)字的特征方面,有時候圖形會更加直觀。今天老師請來了一位圖形朋友——點(老師在黑板上畫點),看到這個點,你能快速地想到哪個數(shù)字?
生齊:1。
師:不要小看了這個小小的點,早在2000多年前,古希臘的數(shù)學家們就是從這樣一個小小的點開始研究,發(fā)現(xiàn)了由許多個這樣的點組成的圖形中的規(guī)律,還給這些圖形取了一個好聽的名字,叫點陣。同學們想不想過一把當數(shù)學家的癮,自己來尋找這些規(guī)律?
生齊:想。
師:今天,我們就一起來探究點陣中隱含的規(guī)律。(板書課題:點陣中的規(guī)律)
二、探究正方形點陣中的規(guī)律
1、探究一組正方形點陣的規(guī)律。
師:我們一起來看看數(shù)學家們當年研究的點陣圖,邊看邊說出各個點陣的點子數(shù)。
。ㄒ来纬鍪厩八膫正方形點陣圖,并逐步引導(dǎo)學生想像、猜測:下一個點陣圖會是什么樣子呢?)
生:第一個是1個點;第二個是4個點;
師:在心里想第三個、第四個點陣圖是什么樣子。(示圖)與你的想像一樣嗎?
生1:一樣。就是9個點。
生2:我知道第四個點陣有16個點,肯定是的。
。S著點陣圖的'依次出現(xiàn),學生的思維逐漸活躍,當?shù)谌齻點陣圖出現(xiàn)的時候,學生不用數(shù),已經(jīng)忍不住地說出了點數(shù)。說明學生已經(jīng)發(fā)現(xiàn)了這組正方形點陣中的規(guī)律。但這時,教師沒有急于讓學生發(fā)表自己的看法,而是給學生留出了完善自己想法的時間,同時也暗示學生:規(guī)律的呈現(xiàn)不能依靠一個或幾個圖形來歸納,應(yīng)該有耐心地繼續(xù)自己的觀察活動。)
師:除了能說出各個點陣的點數(shù)之外,仔細觀察點陣圖:你們還有什么其它的發(fā)現(xiàn)?
生1:第一個點陣是1個點,其余的都是正方形的。
生2:我發(fā)現(xiàn)從第一個圖開始點子數(shù)分別是加3、加5、加7。
生3:我發(fā)現(xiàn)它們的點子數(shù)能寫成1×1、2×2、3×3、4×4。
師:你們真了不起!這種形狀的點陣就是正方形點陣,大家不但用數(shù)字表示每個點陣的點數(shù),還能用算式來表示這組點陣的規(guī)律。根據(jù)剛才發(fā)現(xiàn)的規(guī)律,想一想:第五個點陣是什么樣子呢?自己畫出來,并用算式表示點數(shù)。
(學生活動:獨立畫出第五個5×5的點陣圖,全班交流。)
師:照這樣的規(guī)律繼續(xù)畫下去,第9個點陣的點數(shù)如何用算式來表示?第100個呢?第n個呢?在小組內(nèi)交流一下。
生:第九個點陣表示為9×9;
第100個點陣表示為100×100;
第n個點陣就表示為n×n。
(結(jié)合發(fā)現(xiàn)的規(guī)律,引導(dǎo)學生逐步完善自己的想法,建立總結(jié)正方形點陣規(guī)律的模型。)
師:那么你們覺得每個正方形點陣的點子總數(shù)與什么有關(guān)系?在小組內(nèi)討論交流。
生1:點子總數(shù)與正方形點陣每一排的點子數(shù)有關(guān)系。
生2:就是邊長乘邊長。
生3:還與是第幾個有關(guān)系,第一個就是1×1,第二個就是2×2,第三個就是3×3,一直這樣數(shù)下去。
。▽W會用簡單的語言表述自己的想法,使得初步的形象感知得到提升)
師:說得真好!每個正方形點陣的點子總數(shù)可以看作是一個相同數(shù)字相乘的積,這個數(shù)字與點陣的序號有關(guān),與每個正方形點陣每排的點子數(shù)也有關(guān)系。
2、同一個點陣的不同劃分中的規(guī)律。
師:剛才我們研究了一組正方形點陣中隱含的規(guī)律,那么對于同一個點陣來說,如果劃分的方法不同,所呈現(xiàn)的規(guī)律也就不同。
請大家仔細觀察第五個正方形點陣中點的劃分方法,你能發(fā)現(xiàn)什么規(guī)律?與同桌交流你的想法。
生1:我發(fā)現(xiàn)都是用折線分開的。
生2:我發(fā)現(xiàn)從短的線開始,每條線內(nèi)的點分別是1、3、5、7、9。
生3:這個正方形點陣的點數(shù)用算式表示就是:1+3+5+7+9=25。
師:大家的發(fā)現(xiàn)真不少!那如果把每條線所包圍的點子數(shù)記下來,如何用算式來表示?
學生匯報:
第一條線:1 = 1;
第二條線:1+3 = 4;
第三條線:1+3+5 = 9;
第四條線:1+3+5+7 = 16;
第五條線:1+3+5+7+9 = 25;
師:你們覺得這組算式有什么特點?
生1:一個算式比一個算式多加一個數(shù)。
生2:它們的得數(shù)正好是剛才那一排點陣的點子數(shù)。
生3:都是連續(xù)的奇數(shù)在相加。
師:是從幾開始的連續(xù)奇數(shù)呢?
生:是從1開始的連續(xù)奇數(shù)在相加。
師:如果按這樣的劃分方法劃分第六個正方形點陣,它的點數(shù)該如何用算式來表示?
生:1+3+5+7+9+11 = 36。
師:剛才我們是把這個5×5的正方形點陣用折線進行了劃分,你們還有哪些不同的劃分的方法?如何用算式表示?在小組內(nèi)研究一下。
五年級上冊數(shù)學點陣中的規(guī)律教案 7
目標預(yù)設(shè):
1、學生在生動有趣的活動中觀察、尋找圖形的特點,通過探索正方形點陣和長方形點陣的的規(guī)律,發(fā)現(xiàn)正方形數(shù)、長方形數(shù)的特點, 體會到圖形與數(shù)的聯(lián)系,感受數(shù)學的趣味;
2、學生在探索感悟中體會到以形助數(shù)的直觀生動性,嘗試利用圖形解決一些簡單的問題;
3、引導(dǎo)學生從不同的角度看事物,增強學生解決問題的信心。
教學重點:
通過探究點陣中的規(guī)律發(fā)現(xiàn)數(shù)的特征。
教學難點:
體會圖形與數(shù)的聯(lián)系,并靈活主動的解決問題。
學情分析:
《點陣中的規(guī)律》一課是數(shù)形結(jié)合思想在教材中的具體體現(xiàn),通過一年級的找規(guī)律填數(shù),二年級的按規(guī)律接著畫,四年級探索圖形的規(guī)律,學生已有一些初步感受和經(jīng)歷,但學生數(shù)形結(jié)合的主動性和操作能力還較弱。本節(jié)課主要通過對正方形、長方形點陣的研究,生動具體認識相同數(shù)(平方數(shù))之積、連續(xù)數(shù)之積的特點,并試著解決一簡單問題。五年級學生對數(shù)與圖形已有較好的學習基礎(chǔ),數(shù)學教材中對因數(shù)、質(zhì)數(shù)、合數(shù)等抽象概念的教學都是通過數(shù)形結(jié)合的思想方法來引導(dǎo)學生學習的,學生在解決問題時也通過畫線段圖、韋恩圖、示意圖以及表格等把數(shù)量關(guān)系轉(zhuǎn)化為形象的數(shù)量關(guān)系,所以五年級的學生是具備用數(shù)形結(jié)合的方法分析問題的基礎(chǔ)的。
預(yù)設(shè)流程:
一、談話導(dǎo)入,感受點陣
1、學生思考在每一冊的數(shù)學里,除了數(shù)還有什么內(nèi)容,體現(xiàn)圖形的重要性。
2、學生說出認識的圖形。
3、引出并感受生活、數(shù)學里的點陣。
4、揭示課題。
二、 探究正方形點陣,發(fā)現(xiàn)平方數(shù)的特點
1、出示點陣,提出問題
、琶總點陣可以看成什么圖形?
、泼總點陣分別有多少個點?
2、探索點陣中的規(guī)律
師:誰愿意來談?wù)劦谝粋問題?
(可能會有學生認為第一個點陣不是正方形,引導(dǎo)學生認識到:邊長是由幾個點組成的,每個點可代表一個單位長度,點均勻分布,所以第一個點陣可看成是邊長是一的點陣)
師:第二個問題呢?
生能很快說出點數(shù)。
師:你是怎么得到每個點陣中點的個數(shù)的?
。ǹ赡軙袛(shù)與算兩種方法,要求算的學生說出算式)
引導(dǎo)學生認識到算正方形的面積就得到了點數(shù)。
師:那我們看看這些從點陣中得到的.數(shù),你覺得它們有什么特點嗎?
3、借點陣研究平方數(shù)的特點
生:這些數(shù)都可以寫成兩個相同的數(shù)相乘。
師:對,它們都是兩個相同數(shù)之積,在數(shù)學里叫也正方形數(shù)或平方數(shù)。
學生想第五個點陣的樣子,再把它畫出來。對畫出的點陣進行劃分,根據(jù)學生生成發(fā)現(xiàn)正方形數(shù)的主要特點。
4、小結(jié):平方數(shù)有什么特點?看到36這個數(shù),你會想到一個什么樣的點陣?根據(jù)這個圖形,你能把36寫成哪些有趣的算式?如果你以后忘記了平方數(shù)的特點,你會怎么辦?(有意識引導(dǎo)學生回顧方法)
三、自主探究長方形點陣,發(fā)現(xiàn)長方形數(shù)的特點
1、出示長方形點陣。
2、這是一個什么點陣?你能夠根據(jù)你發(fā)現(xiàn)的規(guī)律,把第五個點陣圖畫出來嗎?
3、誰能快速的告訴我,每一個點陣中有多少個點?
4、你是怎么算出來的?
5、這些數(shù)還是相同數(shù)相乘嗎?有什么特點?
6、你能象剛才研究正方形點陣一樣,通過研究長方形點陣的特點,發(fā)現(xiàn)連續(xù)數(shù)相乘的積的特點嗎?(自主研究,匯報交流)
7、小結(jié)
三、拓展提高,解決問題
1、感受點陣的數(shù)學、生活魅力。
2、 數(shù)形結(jié)合,解決問題。
板書設(shè)計:
點陣中的規(guī)律
正方形數(shù) 相同數(shù) 連續(xù)奇數(shù) 連續(xù)自然數(shù)—倒加
1 =1×1
4 =2×2 =1+3 =1+2+1
9 =3×3 =1+3+5 =1+2+3+2+1
16 =4×4 =1+3+5+7 =1+2+3+4+3+2+1
25 =5×5 =1+3+5+7+9 =1+2+3+4+5+4+3+2+1
長方形數(shù) ?
教后反思:
在對教材進行了深入的分析、挖掘和整合后,結(jié)合本次活動研究主題,把《點陣中的規(guī)律》分兩課時進行,本課時以“數(shù)形結(jié)合”為主線,著重讓學生通過研究正方形點陣、長方形點陣,發(fā)現(xiàn)相同數(shù)之積和連續(xù)數(shù)之積的特點;然后讓學生在練習中感受到圖形的直觀形象,數(shù)的簡潔細致;最后激發(fā)學生運用數(shù)形結(jié)合的思想解決一些有挑戰(zhàn)性的問題。學習形式和課堂呈現(xiàn)上,高段學生對學習“有用”的數(shù)學應(yīng)該更加感興趣,所以,這節(jié)課主要用數(shù)學本身的內(nèi)容來吸引學生,在研究幾何形數(shù)的過程中豐富學生對數(shù)學發(fā)展的認識,感受數(shù)學文化的魅力。教學主要分三個層次:在教師幫助下研究正方形點陣,發(fā)現(xiàn)正方數(shù)的特點;運用這種研究方法自主研究長方形點陣;運用數(shù)形結(jié)合思想解決實際問題,感受數(shù)學的魅力。
在課堂實踐中,給了學生極大的探索自由,學生的思維非常活躍,對正方形點陣進行了多種角度的分析,深刻體悟到正方形數(shù)的奧妙,也獲得了“借助點陣分析數(shù)”的方法。雖然課堂內(nèi)未能按預(yù)設(shè)讓學生對長方形數(shù)自主探索(時間不夠,學生對正方形點陣很著迷,研究了很久),但相信他們已經(jīng)有了自主發(fā)現(xiàn)的能力,課后,定能運用學到的研究方法去獨立地研究長方形數(shù)的特點。
五年級上冊數(shù)學點陣中的規(guī)律教案 8
教材內(nèi)容:
北師大版五年級數(shù)學上冊第82-83頁內(nèi)容。
《點陣中的規(guī)律》屬于嘗試與猜測部分的內(nèi)容,這部分內(nèi)容是《新課程標準》中的數(shù)形結(jié)合思想在教材中的具體體現(xiàn),看起來似乎對學生很陌生,與其他知識沒有必然的聯(lián)系,是一節(jié)相對獨立的數(shù)學探究課,其實在前面的學習中學生已經(jīng)接觸過一些,如:一年級的找規(guī)律填數(shù),二年級的按規(guī)律接著畫,以及四年級探索圖形的規(guī)律,都是逐步將數(shù)形結(jié)合在一起,將知識進行進一步提升。使學生通過觀察、推理等活動,找出圖形的變化規(guī)律,培養(yǎng)學生的觀察、推理與歸納概括能力。
教學目標:
。1)結(jié)合具體的圖形,認識“點陣”,了解點陣的基本知識。
。2)能在具體的觀察活動中,發(fā)現(xiàn)點陣中隱藏的規(guī)律,體會圖形與數(shù)的聯(lián)系。
。3)培養(yǎng)學生觀察、概括與推理的能力。
教學重點:
通過觀察活動,引導(dǎo)學生發(fā)現(xiàn)和概括點陣中的規(guī)律。
教學難點:
尋求多種解決問題的方法,體會圖形與數(shù)的聯(lián)系。
教法學法:
教法安排:本節(jié)課我運用了活動教學形式,給予更多的空間讓學生主動去探索新知,引導(dǎo)他們通過獨立思考、相互交流,最后歸納出點陣中的規(guī)律。
學法安排:將自主學習與老師引導(dǎo)相結(jié)合,讓學生通過自主探究,結(jié)合老師的'引導(dǎo),尋求規(guī)律,嘗試發(fā)現(xiàn)數(shù)學的樂趣。
教學過程:
第一環(huán)節(jié),創(chuàng)設(shè)情景,導(dǎo)入新課
首先,出示北京奧運會開幕式擊缶方隊錄像,通過震撼、整齊的擊缶方隊去抓住學生的注意力;接著出示擊缶方陣圖,隨即告訴學生:如果我們將每一個隊員看做成一個點,就形成了點子圖,這樣一個點子圖,早在2000多年前古希臘數(shù)學家們就給它取名叫“點陣”,而且在這些點陣中還隱藏著許多的規(guī)律,這樣一來不僅把方隊(方陣)變成點陣,而且自然地引出了新課,還讓學生感到點陣并不神秘,點陣就在我們生活中。
第二環(huán)節(jié):探究新知,總結(jié)規(guī)律。
出示一組點陣圖,讓同學們自己先觀察這個點陣圖,根據(jù)圖形特征來思考第五幅圖該怎么畫(學生動手操作)。學生通過動手操作并從中探索規(guī)律,然后匯報,由我引導(dǎo)出最終的結(jié)果:第幾個點陣就是幾×幾,如果用n來代替點陣圖的序數(shù),那么可以將規(guī)律表示為n×n。
剛才用的是從點陣圖的外形特征出發(fā),發(fā)現(xiàn)并找到解決外形點陣中點的特點的方法,如果現(xiàn)在我們換個角度,還能不能找出點陣的規(guī)律呢?引導(dǎo)學生“斜著看”。引導(dǎo)學生用數(shù)學表達式來表示點陣中所有點的數(shù)目,并依此寫出后幾個點陣圖點數(shù)的數(shù)學表達式,總結(jié)規(guī)律:第幾個點陣就從1連續(xù)加到幾,再反過來加回到1。
做到這還不夠,繼續(xù)引導(dǎo)學生再換個角度,看有沒有新發(fā)現(xiàn)?隨即引導(dǎo)學生“拐彎看”,讓學生根據(jù)折線劃分后的點陣圖自己探究規(guī)律并用數(shù)學表達式總結(jié)規(guī)律。即:第幾個點陣圖就是從1開始加連續(xù)的幾個奇數(shù)。第n個就是要從1加到2n-1(在這可能學生對2n-1很難概括出來,須適時引導(dǎo))
第三環(huán)節(jié):應(yīng)用方法,解決問題
試一試(第一題):在本道題的規(guī)律發(fā)現(xiàn)中,要讓學生自己感覺圖形的特點,并結(jié)合1×2的含義完成練習,完成練習后讓學生再思考為什么你寫出這樣的算式。再讓學生思考這組點陣圖的規(guī)律,規(guī)律總結(jié)為:第n個點陣圖中的點陣數(shù)目是n×(n+1)。
試一試(第二題),本道題直接讓學生獨立完成,完成后評講,為什么可以得到15的結(jié)果,學生匯報后,總結(jié)一下,第n個點陣圖的點陣數(shù)目是1+2+3+…+n。
第四環(huán)節(jié):課堂回顧,總結(jié)收獲
讓同學們回顧本節(jié)課內(nèi)容:
1、點陣中的規(guī)律可以從點陣的形狀入手;
2、從不同的觀察點,用不同的劃分的方法也可以發(fā)現(xiàn)點陣的規(guī)律;
3、點陣的規(guī)律用算式來表達更加的方便。
最后,為了使學生體驗到數(shù)學知識與生活的密切聯(lián)系,設(shè)計了拓展應(yīng)用,運用課件為學生展示了點陣在生活中的實際應(yīng)用。并以古希臘數(shù)學家的一句名言來結(jié)束本堂課。
五年級上冊數(shù)學點陣中的規(guī)律教案 9
教學目標:
1.在活動中,通過觀察前后圖形中點的變化規(guī)律,推理得出后續(xù)圖形中點的數(shù)量。
2、培養(yǎng)學生推理、觀察、概括能力。
教學重點:
引導(dǎo)學生發(fā)現(xiàn)與概括規(guī)律
教學難點:
總結(jié)概括規(guī)律。
教學準備:
課件,匯報單,小獎品,磁扣等。
教學過程:
一.激趣導(dǎo)入,引出課題:
師:今天的數(shù)學課,老師給大家?guī)砹艘粋非常重要的圖形,一定要注意觀看啊。(課件出示一個圓點)。
生:老師,就是一個圓點啊。
師:是啊,點是幾何中最基本的圖形,可別小看這個點。許多點排列起來就組成一個有趣的點陣,比如:我們常玩的五子棋,圍棋(出示五子棋,圍棋的圖片)都是由各個點組成的點陣。其實,兩千多年前,希臘的數(shù)學家就開始研究點陣了。這節(jié)課,我們也來嘗試研究點陣的規(guī)律,好嗎?(板書課題——點陣中的規(guī)律)。
二.課中參與,興趣正濃:
1、出示點陣,提出問題
師:(出示點陣),這就是他們當時研究過的一組點陣,請大家用數(shù)學的眼光仔細觀察,數(shù)數(shù)每個點陣中分別有多少個點?
生:第一個點陣有1個點,第二個點陣有4個點,第三個點陣有9個點,第四個點陣有16個點。
師:你能說一說你是怎么得到每個點陣中點的個數(shù)的嗎?
生:我是通過數(shù)出每個點陣中點的個數(shù)得到的。
師:誰還有不同的方法?
生:我是通過計算得到的。
師:能具體說一說是怎樣通過計算得到的嗎?
生:第一個點陣有1個點;第二個點陣可以看成邊長是2的正方形,共有2×2=4個點;第三個點陣可以看成邊長是3的正方形,共有3×3=9個點;第4個點陣可以看成邊長是4的正方形,共有4×4=16個點。
2、探索點陣中的規(guī)律
師:剛才,我們在研究這一組點陣中點的個數(shù)時,同學們研究得非常好,但是如果每個點陣中點的個數(shù)再多一些,又該怎樣求出點陣中點的個數(shù)呢?(同桌之間討論、交流)
師:誰來匯報討論的情況?
生:我們分析了前面幾個點陣圖的特點,認為在這個點陣圖中,點的個數(shù)的規(guī)律是:1×1,2×2,3×3,4×4,……也就是n×n
師:總結(jié)得非常好。也就是說:用“橫排數(shù)×豎排數(shù)”,對嗎?(板書)你們能根據(jù)這一規(guī)律說出第五個點陣有多少個點,并畫出此圖形嗎?(學生點子圖上畫第五個點陣圖,展示)
師:為什么這樣畫?
生:因為前面四個都可以看作正方形,所以第五個圖也是正方形。
師:說得很好。請同學們再想一想,如果我們把第5個點陣中的點,按照這樣的方法進行劃分(出示教材第82頁第(3)題圖),看看你有什么發(fā)現(xiàn)?
生:(小組內(nèi)討論交流)
生:小組代表匯報。
生:(總結(jié))每用折線畫一次后,點陣中的個數(shù)是:
1=1
1+3=4
1+3+5=9
1+3+5+7=16
………………
生:(總結(jié))這樣劃分后,點陣中的規(guī)律是:1,1+3,1+3+5,1+3+5+7,……所有奇數(shù)相加的和。
師:真了不起。這種劃分方法,我們可以叫做“折線劃分法”。通過研究點陣,我們發(fā)現(xiàn)這組正方形點陣中有很多規(guī)律。能用剛才的方法來研究長方形的點陣嗎?
生:可以。
師:課件出示一組長方形的點陣。提問:你們能用剛才的兩種方法發(fā)現(xiàn)這個點陣的規(guī)律嗎?
生:(1)。橫排×豎排:1×2,2×3,3×4,4×5
(2).折線劃分法:2,2+4,2+4+6,2+4+6+8,2+4+6+8+10
師:在點子圖上畫出第5個點陣。小組交流,研究:上面的點陣還有其他的.規(guī)律嗎?
生:(1)兩個兩個數(shù):1×2,3×2,6×2,10×2,15×2
(2).斜著一層一層數(shù):1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1
師:同學們真善于發(fā)現(xiàn)和創(chuàng)造規(guī)律。除了正方形和長方形點陣外,還有很多其它形狀的點陣,我們研究他們,同樣會有很大的收獲。看看,這是一組什么形狀的點陣?(課件出示三角形點陣圖)你能用一層一層數(shù)的方法,表示你發(fā)現(xiàn)的規(guī)律嗎?展示,根據(jù)你發(fā)現(xiàn)的規(guī)律畫出第五個點陣。
生;1,1+2,1+2+3,1+2+3+4……
三.應(yīng)用新知,興趣優(yōu)在:
師:其實,點陣是靈活多樣的,每個點陣都有自己的規(guī)律。(課件出示練一練第2題)觀察下圖中的幾個圖形,小組內(nèi)說說他們的規(guī)律,然后小組合作用老師為大家準備的學具粘出下一個圖形。
生:匯報,展示。
四.課末設(shè)計,興趣高漲:
師:剛才,我們共同研究了一些點陣的規(guī)律。現(xiàn)在,你想自己設(shè)計一個點陣嗎
生:想。
師:好。接下來,我們就以小組為單位,開展一個點陣設(shè)計大賽,好嗎?課件出示要求:
點陣設(shè)計大賽
1、設(shè)計時間:5分鐘
2、設(shè)計要求:
(1)小組合作,共同設(shè)計一幅有規(guī)律、美觀的點陣圖,畫出前4個點陣,并用算式表示每個點陣的數(shù)量.
(2)每組派代表說明設(shè)計的方法及點陣中的規(guī)律,并展示作品.
。3)優(yōu)秀小組的作品,在班級”展示臺”展出.
生:小組內(nèi)自由設(shè)計,展示。
五.聯(lián)系生活,興趣永存:
師:看來,同學們各個都是個出色的小設(shè)計師!點陣的規(guī)律,活中也十分常見。比如:(課件出示圖片)一些大型活動的展示標志,廣場上美麗的花壇,由點陣構(gòu)成的各種圖案等等?梢哉f,生活中,處處離不開點陣的規(guī)律,離不開數(shù)學的知識。對嗎?那么,就讓我們用希臘數(shù)學家普洛克拉的一句話結(jié)束今天的學習:哪里有數(shù)學,哪里就有美!數(shù)學美把自然規(guī)律抽象成一幅簡潔準確的圖像!畔ED數(shù)學家:普洛克拉
五年級上冊數(shù)學點陣中的規(guī)律教案 10
我說課的內(nèi)容是北師版小學數(shù)學第九冊第五單元的最后一課《點陣中的規(guī)律》。我將這次說課分為以下幾個部分:
第一部分:教材分析
1、教材地位作用
嘗試與猜測這部分內(nèi)容是《標準》中的數(shù)形結(jié)合思想在教材中的具體體現(xiàn),它從“中國古代名題”延伸到“普遍聯(lián)系找規(guī)律”,其中內(nèi)容廣,想法深,理念新是教材的一大特色!饵c陣中的規(guī)律》看起來似乎對學生很陌生,與其他知識沒有必然的聯(lián)系,是一節(jié)相對獨立的數(shù)學活動課,其實在前面的學習中學生已經(jīng)接觸過一些,如:一年級的找規(guī)律填數(shù),二年級的按規(guī)律接著畫,以及四年級探索圖形的規(guī)律,都是逐步將數(shù)形結(jié)合在一起,將知識進行進一步提升。使學生通過觀察、推理等活動,在生動的情景中找出圖形的變化規(guī)律,培養(yǎng)學生的觀察、想象與歸納概括能力,提高學生合作交流與創(chuàng)新的意識。
2、教學目標
基于以上的認識和新課標對第一學段的數(shù)學學科要求,我從“知識與技能、過程與方法、情感態(tài)度與價值觀”三個方面制定本課的教學目標:
。1)、讓學生在生動有趣的活動中觀察、尋找圖形的特點,從而探索出點陣中的規(guī)律,并體會到圖形與數(shù)的聯(lián)系;
。2)、通過活動教學培養(yǎng)了學生歸納、概括和邏輯抽象思維的能力,讓學生感受數(shù)學與生活的密切聯(lián)系。
(3)、增強學生審美觀念,培養(yǎng)學生的審美能力。
3、教學重點:引導(dǎo)學生發(fā)現(xiàn)和概括點陣中的規(guī)律。
4、教學難點:尋求多種解決問題的方法,體會圖形與數(shù)的聯(lián)系。
第二部分:教法學法設(shè)計
教法安排
本節(jié)課我運用了活動教學形式,通過創(chuàng)設(shè)找朋友的游戲情境,給學生提供較大的思維空間,大膽放手讓學生主動去探索新知,引導(dǎo)他們通過獨立思考、組內(nèi)合作學習,以及組間相互匯報、交流、提問、評價等方式,歸納總結(jié)出中的規(guī)律,充分體會圖形與數(shù)的聯(lián)系。
學法體現(xiàn)
五年級學生善于動手操作、探究能力較強,根據(jù)這一年齡特點,將自主探究和小組合作進行綜合運用,讓學生通過想一想,說一說,粘一粘等形式,體驗自主學習,探究新知,嘗到發(fā)現(xiàn)數(shù)學的滋味。
第三部分:設(shè)計思路
為了體現(xiàn)以學生為本的課堂教學理念,針對瞬息萬變的課堂教學實際,我對教學內(nèi)容進行了理性的重組:首先利用常見的五子棋、跳棋讓學生理解什么是點陣,再通過生動有趣的找朋友活動,為學生呈現(xiàn)了形似正方形、長方形、三角形的部分點陣圖,讓學生發(fā)現(xiàn)概括點陣中的規(guī)律,從而計算出后面圖形點的數(shù)量。
其次,為學生演示了點陣的劃分方法,引導(dǎo)學生發(fā)現(xiàn)新的規(guī)律,并列出算式,讓他們體會到點陣研究數(shù)的形式可以是多樣的,并通過獨立思考和合作交流完成練習,最后為學生呈現(xiàn)了生活中的點陣。
第四部分:教學程序
(一)課始激趣,興趣盎然
出示學生熟悉的五子棋、跳棋,讓他們直觀地看到:象這樣有規(guī)律排列的點子圖在數(shù)學中可稱之為“點陣”,從而引出課題:點陣中的.規(guī)律。
(二)課中參與,興趣正濃
1、師貼出正方形、長方形、三角形點陣圖中的部分圖形,將其余圖形發(fā)給小組內(nèi)的學生,請他們玩找朋友游戲,將手中的圖形在黑板上對號入座。(先獨立思考,再小組交流)
2、請小組派代表按點陣中的規(guī)律貼圖,并說一說想法。
3、讓學生進一步觀察思考,通過互評將規(guī)律補充完整的同時,教師適時引導(dǎo):“想計算每個點陣中有多少個點子該怎么辦呢?”“如果每個點陣中點的個數(shù)再多一些,該怎樣快速求出點陣中點的個數(shù)呢?”
4、以正方形點陣為例,鼓勵他們用多種方法計算的同時,引導(dǎo)學生將總結(jié)的規(guī)律抽象成算式。
5、請學生運用發(fā)現(xiàn)的這一規(guī)律說出第五個正方形點陣有多少點,試著畫出圖形,并說一說想法。
6、同理,請學生總結(jié)出長方形點陣的規(guī)律,并列式計算。
7、請學生繼續(xù)尋找三角形點陣的規(guī)律,并寫出算式。適時引入劃分法,讓他們說說三角形點陣有沒有其它的劃分方法。
8、讓學生用劃分法將第五個正方形點陣圖進行劃分,并根據(jù)學生的課堂生成情況靈活的出示“折線劃分法”,使學生體會到通過點陣研究數(shù)的形式可以是多樣的。教育論文在線
。ㄈ┱n末設(shè)疑,興趣猶存
1、按下面的方法劃分點陣中的點,并填寫算式。
。ㄕ垖W生獨立完成,,通過圖中的劃分可以輕松列出算式。)
2、觀察下列圖形的規(guī)律并填空。
(此題是總復(fù)習中練習,讓學生尋找規(guī)律的同時,也培養(yǎng)了學生的想象能力。)
3、觀察下圖中已有的幾個圖形,按規(guī)律畫出一個圖形。
。榱耸褂欣щy的學生生動地理解圖形變化的規(guī)律,我采用了不同顏色標出了每次的變化情況。)
第五部分:拓展應(yīng)用
為了使學生體驗到數(shù)學知識與生活的密切聯(lián)系,設(shè)計了拓展應(yīng)用,運用課件為學生展示了點陣在生活中的實際應(yīng)用。
課堂小結(jié):
引導(dǎo)學生回憶總結(jié):“通過這節(jié)課的學習,有什么收獲?它對我有什么幫助?這節(jié)課表現(xiàn)的怎樣?”或者反思探究過程中的問題,達到思想共享的目的。
(這種開放式的總結(jié),給學生提供了自我感悟、自評與互評的時間和空間,有利于培養(yǎng)學生的反思意識。)
這節(jié)課我本著“充分預(yù)設(shè),關(guān)注生成”的態(tài)度,讓學生自主的探究,解決數(shù)學問題,獲取數(shù)學經(jīng)驗”。在現(xiàn)實情境中,有意識地采用“自主探究,合作交流”等活動方式,讓學生親身經(jīng)歷發(fā)現(xiàn)規(guī)律、歸納概括的全過程,同時,為學生提供了輕松愉悅的教學環(huán)境,讓他們學習有價值的數(shù)學,不同的學生在數(shù)學上得到不同的發(fā)展。
五年級上冊數(shù)學點陣中的規(guī)律教案 11
教學內(nèi)容:北師大版五上第五單元《點陣中的規(guī)律》P82-83
教學目標:
1、在活動中,通過觀察前后圖形中點的變化規(guī)律,推理得出后續(xù)圖形中點的數(shù)量,體會到圖形與數(shù)的聯(lián)系,感受數(shù)學均衡美。
2、培養(yǎng)學生推理、觀察、概括能力。
教學重點:引導(dǎo)學生發(fā)現(xiàn)與概括規(guī)律。
教學難點:概括規(guī)律。
教學過程:
一、認識點陣:
師:同學們,你們都知道自然數(shù)分成奇數(shù)和偶數(shù),最早進行這樣的劃分的數(shù)學家叫畢達哥拉斯,他非常喜歡數(shù)學,他研究數(shù)學可不是為了考試和分數(shù),就是因為喜歡,他對研究數(shù)的特征非常著迷,研究方法也很獨特,他是把數(shù)想象成小石子或小圓點,擺成圖形來研究數(shù)。今天我們也來看看吸引畢達哥拉斯的“點陣”和數(shù)之間到底有什么樣的聯(lián)系。
(板書課題:點陣中的規(guī)律)。
二、研究點陣:
。ㄒ唬┏鍪军c陣,提出問題
····
·······
·········
··········
師:這就是他當時研究過的一組正方形點陣,有規(guī)律嗎?如果由你來擺這組正方形點陣,你想怎么擺呢?
(二)探索點陣中的規(guī)律
1、研究正方形點陣的`規(guī)律
。1)觀察這些正方形點陣,我們可以得到哪些數(shù)?拿出草稿本思考并寫下來。
。2)你能寫出算式表示點陣中點的個數(shù)嗎?
以小組為單位,討論交流,巡視學生完成情況。
。3)小組匯報研究結(jié)果。
。4)嘗試畫出第五個圖形,延伸到第六個圖形。
展示學生成果。
。5)還有不同的算式表示這些點數(shù)嗎?
學生思考。
(6)如果學生回答不出,教師演示擺的方法,從擺法上引導(dǎo)學生用算式表示點數(shù)。
·····
·····
·····
·····
·····
。7):擺法不同,得到的算式也不相同,每組算式的特點,也就是正方形點陣的規(guī)律。有均衡的,有對稱的,這就是數(shù)學之美。
2、研究長方形的點陣規(guī)律
(1)出示P83“試一試”第一題圖
·····
·········
············
··············
。1×2)()()()
。2)師:你能找出這些長方形點陣有什么規(guī)律嗎?
你能畫出第五個點陣嗎?
。3)小組討論、交流。
。4)匯報小組的發(fā)現(xiàn),展示所畫的第五個點陣。
師:同學們真善于發(fā)現(xiàn)和創(chuàng)造規(guī)律。除了正方形和長方形點陣外,還有很多其它形狀的點陣。
3、研究三角形點陣的規(guī)律
。1)出示三角形點陣圖
·
···
······
··········
(1)(3)(6)(10)
。2)師:①這是一組什么形狀的點陣?
②你能用算式表示你發(fā)現(xiàn)的規(guī)律嗎?
③根據(jù)點陣規(guī)律,畫出第五個點陣。
。3)展示根據(jù)你發(fā)現(xiàn)的規(guī)律畫出的第五個點陣。
。ㄈ
其實,點陣是靈活多樣的,每個點陣都有自己的規(guī)律,只要我們找到規(guī)律,就能推出后面點陣的點數(shù)。借助點陣圖,不同的觀察方法,可以得到不同的數(shù)的規(guī)律,正所謂“遠看成嶺近成峰,遠近高低各不同”。
三、解決點陣問題:
(一)學生觀察課本P83練一練第2題圖,小組內(nèi)說說他們的規(guī)律,然后小組合作畫出下一個圖形。
。ǘ﹨R報,展示,說說規(guī)律。
四、設(shè)計點陣:
。ㄒ唬⿴煟簞偛牛覀児餐芯苛艘恍c陣的規(guī)律,F(xiàn)在,你想自己設(shè)計一個點陣嗎?接下來,我們就以小組為單位,開展一個點陣設(shè)計大賽,好嗎?
。ǘ┏鍪疽螅
點陣設(shè)計大賽:
1、設(shè)計時間:5分鐘
2、設(shè)計要求:
。1)小組合作,共同設(shè)計一幅有規(guī)律的、美觀的點陣圖,畫出前4個點陣,并用算式表示每個點陣的數(shù)量。
。2)每組派代表說明設(shè)計的方法及點陣中的規(guī)律,并展示作品。
小組內(nèi)自由設(shè)計,展示。
五、感受點陣:
師:同學們個個都是個出色的小設(shè)計師!點陣的運用,在生活中也十分常見。比如:我們常玩的五子棋,圍棋,跳棋都是點陣的運用。一些大型活動的展示標志,廣場上美麗的花壇,由點陣構(gòu)成的各種圖案等等?梢哉f,生活中,處處離不開點陣的規(guī)律,離不開數(shù)學的知識。那么,就讓我們用希臘數(shù)學家普洛克拉的一句話結(jié)束今天的學習:哪里有數(shù)學,哪里就有美!數(shù)學美把自然規(guī)律抽象成一幅簡潔準確的圖像。
【五年級上冊數(shù)學點陣中的規(guī)律教案】相關(guān)文章:
五年級上冊數(shù)學點陣中的規(guī)律教案03-09
五年級上冊數(shù)學點陣中的規(guī)律教案3篇03-09
五年級上冊數(shù)學點陣中的規(guī)律教案(3篇)03-09
北師大版五年級數(shù)學上冊《點陣中的規(guī)律》教案02-19
小學五年級上數(shù)學北師大版《點陣中的規(guī)律》教案08-26
《找規(guī)律》數(shù)學教案02-11
數(shù)學教案:找規(guī)律08-02