有關(guān)八年級數(shù)學(xué)教案模板(精選14篇)
作為一名優(yōu)秀的教育工作者,時常需要用到教案,借助教案可以有效提升自己的教學(xué)能力。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家整理的八年級數(shù)學(xué)教案,僅供參考,大家一起來看看吧。
八年級數(shù)學(xué)教案 1
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識。
[教學(xué)目標(biāo)]
一、 知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡單的實(shí)際問題
3學(xué)會簡單的合情推理與數(shù)學(xué)說理
二、 過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識。
三、 情感與態(tài)度目標(biāo)
通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。
四、 重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2熟練運(yùn)用勾股定理
[教學(xué)過程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!
2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因?yàn)檫呴L為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的`生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)
1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機(jī)會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
八年級數(shù)學(xué)教案 2
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?
(一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點(diǎn)即可畫出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?
。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線).
3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?
4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點(diǎn)在坐標(biāo)系的什么地方?
二、探究歸納
1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).
2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.
分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.
解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時,x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時,y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).
過點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數(shù)y=kx+b,當(dāng)x=0時,y=b;當(dāng)y=0時,.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.
三、實(shí)踐應(yīng)用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的.值.
解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?
八年級數(shù)學(xué)教案 3
教學(xué)目標(biāo):
知識與技能目標(biāo):
1.掌握矩形的概念、性質(zhì)和判別條件.
2.提高對矩形的性質(zhì)和判別在實(shí)際生活中的應(yīng)用能力.
過程與方法目標(biāo):
1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學(xué)生的合情推理能力,主觀探索習(xí)慣,逐步掌握說理的基本方法.
2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想.
情感與態(tài)度目標(biāo):
1.在操作活動過程中,加深對矩形的的認(rèn)識,并以此激發(fā)學(xué)生的探索精神
2.通過對矩形的探索學(xué)習(xí),體會它的內(nèi)在美和應(yīng)用美
教學(xué)重點(diǎn):
矩形的性質(zhì)和常用判別方法的理解和掌握.
教學(xué)難點(diǎn):
矩形的性質(zhì)和常用判別方法的綜合應(yīng)用.
教學(xué)方法:
分析啟發(fā)法
教具準(zhǔn)備:
像框,平行四邊形框架教具,多媒體課件.
教學(xué)過程設(shè)計:
一.情境導(dǎo)入:
演示平行四邊形活動框架,引入課題.
二.講授新課:
1.歸納矩形的定義:
問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學(xué)生思考、回答.)
結(jié)論:有一個內(nèi)角是直角的平行四邊形是矩形.
八年級數(shù)學(xué)上冊教案2.探究矩形的性質(zhì):
(1).問題:像框除了“有一個內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學(xué)生思考、回答.)
結(jié)論:矩形的四個角都是直角.
。2).探索矩形對角線的性質(zhì):
讓學(xué)生進(jìn)行如下操作后,思考以下問題:(幻燈片展示)
在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點(diǎn)上,拉動一對不相鄰的頂點(diǎn),改變平行四邊形的形狀.
、.隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?
、.當(dāng)∠α是銳角時,兩條對角線的長度有什么關(guān)系?當(dāng)∠α是鈍角時呢?
、.當(dāng)∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關(guān)系?
。▽W(xué)生操作,思考、交流、歸納.)
結(jié)論:矩形的兩條對角線相等.
(3).議一議:(展示問題,引導(dǎo)學(xué)生討論解決.)
、.矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.
、.直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?
。4).歸納矩形的性質(zhì):(引導(dǎo)學(xué)生歸納,并體會矩形的“對稱美”.)
矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.
例解:(性質(zhì)的運(yùn)用,滲透矩形對角線的“化歸”功能.)
如圖,在矩形ABCD中,兩條對角線AC,BD相交于點(diǎn)O,AB=OA=4
厘米.求BD與AD的長.
。ㄒ龑(dǎo)學(xué)生分析、解答.)
探索矩形的判別條件:(由修理桌子引出)
(1).想一想:(學(xué)生討論、交流、共同學(xué)習(xí))
對角線相等的平行四邊形是怎樣的四邊形?為什么?
結(jié)論:對角線相等的平行四邊形是矩形.
。ɡ碛煽捎蓭熒餐治,然后用幻燈片展示完整過程.)
。2).歸納矩形的判別方法:(引導(dǎo)學(xué)生歸納)
有一個內(nèi)角是直角的平行四邊形是矩形.
對角線相等的平行四邊形是矩形.
三.課堂練習(xí):(出示P98隨堂練習(xí)題,學(xué)生思考、解答.)
四.新課小結(jié):
通過本節(jié)課的'學(xué)習(xí),你有什么收獲?
(師生共同從知識與思想方法兩方面小結(jié).)
五.作業(yè)設(shè)計:P99習(xí)題4.6第1、2、3題.
板書設(shè)計:
4.矩形
矩形的定義:
矩形的性質(zhì):
前面知識的小系統(tǒng)圖示:
三.矩形的判別條件:
例1
課后反思:在平行四邊形及菱形的教學(xué)后。學(xué)生已經(jīng)學(xué)會自主探索的方法,自己動手猜想驗(yàn)證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計算也學(xué)會應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決?偟目磥磉@節(jié)課學(xué)生掌握的還不錯。當(dāng)然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。
八年級數(shù)學(xué)教案 4
教學(xué)目標(biāo)
一、教學(xué)知識點(diǎn):
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過具體實(shí)例認(rèn)識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價值觀要求
1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進(jìn)行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強(qiáng)對圖形欣賞的意識.
2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進(jìn)一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點(diǎn):
旋轉(zhuǎn)的基本性質(zhì)
教學(xué)難點(diǎn):
探索旋轉(zhuǎn)的基本性質(zhì)
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實(shí)例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過程:
一.巧設(shè)情景問題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景)。
。1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?
(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?
1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點(diǎn)轉(zhuǎn)動的.
2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.
3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點(diǎn)的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點(diǎn)沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn)(circumrotate).這個定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的.角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點(diǎn)沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點(diǎn)同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點(diǎn)轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:
(1)旋轉(zhuǎn)中心是O點(diǎn),旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置.這時點(diǎn)A旋轉(zhuǎn)到點(diǎn)D的位置,點(diǎn)B旋轉(zhuǎn)到點(diǎn)E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點(diǎn)同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因?yàn)椤螧OD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點(diǎn)A移動到點(diǎn)D的位置,點(diǎn)B移動到點(diǎn)E的位置,點(diǎn)C移動到點(diǎn)F的位置,則點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F就是對應(yīng)點(diǎn).從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因?yàn)镺是旋轉(zhuǎn)中心,點(diǎn)A與點(diǎn)D是對應(yīng)點(diǎn),點(diǎn)B與點(diǎn)E是對應(yīng)點(diǎn),且OA=OD,OB=OE,所以可以知道:對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的長度是相等的.
因?yàn)辄c(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E是對應(yīng)點(diǎn),且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.
。劾1](課本68頁例1)
。蹘熒参觯萁(jīng)演示(鐘表實(shí)物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?
過程:同樣讓學(xué)生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.
整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書設(shè)計:
略
教學(xué)反思:
本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
八年級數(shù)學(xué)教案 5
一、教學(xué)目標(biāo):
1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、
2、掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、
3、會用科學(xué)計數(shù)法表示小于1的數(shù)、
二、教學(xué)重點(diǎn):
掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、
三、難點(diǎn):
會用科學(xué)計數(shù)法表示小于1的數(shù)、
四、情感態(tài)度與價值觀:
通過學(xué)習(xí)課堂知識使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實(shí)踐,服務(wù)于實(shí)踐、能利用事物之間的類比性解決問題、
五、教學(xué)過程:
(一)課堂引入
1、回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì):
(1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù));
。2)冪的乘方:(am)n = amn (m,n是正整數(shù));
(3)積的乘方:(ab)n = anbn (n是正整數(shù));
。4)同底數(shù)的冪的.除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n);
。5)商的乘方:()n = (n是正整數(shù));
2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時,a0 = 1
3、你還記得1納米=10?9米,即1納米=米嗎?
4、計算當(dāng)a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)、
。ǘ┛偨Y(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立、 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的、
(三)科學(xué)記數(shù)法:
我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5.即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)、 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2.0、0012 = 1.2×10?3,0、00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個非0數(shù)字前有8個0,用科學(xué)記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應(yīng)該是?m?
八年級數(shù)學(xué)教案 6
教學(xué)目標(biāo):
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問題。
能力目標(biāo):
1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識現(xiàn)實(shí)世界的意識和能力。
2、經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感目標(biāo):
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
教學(xué)重點(diǎn):
掌握函數(shù)概念。
判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
能把實(shí)際問題抽象概括為函數(shù)問題。
教學(xué)難點(diǎn):
理解函數(shù)的概念。
能把實(shí)際問題抽象概括為函數(shù)問題。
教學(xué)過程設(shè)計:
一、創(chuàng)設(shè)問題情境,導(dǎo)入新課
『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
『師』:當(dāng)你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?
『生』:應(yīng)該有規(guī)律。因?yàn)槿穗S輪一直做圓周運(yùn)動。所以人的高度過一段時間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。
『師』:分析有道理。摩天輪上一點(diǎn)的高度h與旋轉(zhuǎn)時間t之間有一定的`關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點(diǎn)的高度h(米)之間的關(guān)系。
大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進(jìn)行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?
『生』:確定。
『師』:在這個問題中,我們研究的對象有幾個?分別是什么?
『生』:研究的對象有兩個,是時間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識世界。下面我們就去研究一些有關(guān)變量的問題。
二、新課學(xué)習(xí)
做一做
(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?
填寫下表:
層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?
『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。
。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗(yàn)公式,其中V表示剎車前汽車的速度(單位:千米/時)
①計算當(dāng)fenbie為50,60,100時,相應(yīng)的滑行距離S是多少?
、诮o定一個V值,你能求出相應(yīng)的S值嗎?
解:略
議一議
『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點(diǎn)是什么?不同點(diǎn)又是什么?
『生』:相同點(diǎn)是:這三個問題中都研究了兩個變量。
不同點(diǎn)是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。
『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。
函數(shù)的概念
在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
三、隨堂練習(xí)
書P152頁 隨堂練習(xí)1、2、3
四、本課小結(jié)
初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。
函數(shù)的三種表達(dá)式:
。1)圖象;(2)表格;(3)關(guān)系式。
五、探究活動
為了加強(qiáng)公民的節(jié)水意識,某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費(fèi),該市某戶居民5月份用水x噸(x>10),應(yīng)交水費(fèi)y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?
。ù鸢福篩=1.8x-6或)
六、課后作業(yè)
習(xí)題6.1
八年級數(shù)學(xué)教案 7
一、學(xué)習(xí)目標(biāo)及重、難點(diǎn):
1、了解方差的定義和計算公式。
2、理解方差概念的產(chǎn)生和形成的過程。
3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
難點(diǎn):理解方差公式
二、自主學(xué)習(xí):
(一)知識我先懂:
方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用
來表示。
給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。
(二)自主檢測小練習(xí):
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )
(2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )
歸納: 方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的'成績比較穩(wěn)定?為什么?、
測試次數(shù) 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強(qiáng) 10 13 16 14 12
給力提示:先求平均數(shù),在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學(xué)中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學(xué)生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?
四、課堂小結(jié)
方差公式:
給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數(shù),是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):必做題:教材141頁 練習(xí)1、2 選做題:練習(xí)冊對應(yīng)部分習(xí)題
七、學(xué)習(xí)小札記:
寫下你的收獲,交流你的經(jīng)驗(yàn),分享你的成果,你會感到無比的快樂!
八年級數(shù)學(xué)教案 8
一、教學(xué)內(nèi)容:
本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。
二、教材分析:
完全平方公式是乘法公式的重要組成部分,也是乘法運(yùn)算知識的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對多項(xiàng)式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運(yùn)算的必備知識,它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。
本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗(yàn)證為學(xué)生體驗(yàn)規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對簡化某些代數(shù)式的運(yùn)算,培養(yǎng)學(xué)生的求簡意識很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。
重點(diǎn):掌握完全平方公式,會運(yùn)用公式進(jìn)行簡單的計算。
難點(diǎn):理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。
三、教學(xué)目標(biāo)
(1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運(yùn)用公式進(jìn)行簡單計算。
(2)進(jìn)一步發(fā)展學(xué)生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會獨(dú)立思考。
(3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會與他人合作交流,體驗(yàn)解決問題的多樣性。
(4)體驗(yàn)完全平方公式可以簡化運(yùn)算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過程中獲得體驗(yàn)成功的喜悅,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。
四、學(xué)情分析與教法學(xué)法
學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運(yùn)算及平方差公式的基礎(chǔ)上開展的,具備了初步的'總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強(qiáng)的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。
學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨(dú)立思考、歸納總結(jié)、合作交流
總結(jié)反思中獲得數(shù)學(xué)知識與技能。
教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動探究的學(xué)習(xí)狀態(tài)。
五、教學(xué)過程
(略)
六、教學(xué)評價
在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評價學(xué)生在知識技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識為出發(fā)點(diǎn),自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨(dú)立思考為主,當(dāng)遇到困難時學(xué)會求助交流,教師也要給學(xué)生思考交流的時間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。
在整個學(xué)習(xí)過程中,通過對學(xué)生參與自主探究的程度、合作交流的意識以及獨(dú)立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進(jìn)行評價,并對學(xué)生的想法或結(jié)論給予鼓勵評價。
八年級數(shù)學(xué)教案 9
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
2、會求一組數(shù)據(jù)的極差.
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法
1、重點(diǎn):會求一組數(shù)據(jù)的極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進(jìn)行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據(jù)兩段時間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎?說說你觀察得到的.結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。
八年級數(shù)學(xué)教案 10
教學(xué)目標(biāo)
1.探索并掌握的概念及其特殊的性質(zhì)。
2.學(xué)會識別。
3.在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,進(jìn)一步培養(yǎng)學(xué)生數(shù)學(xué)說理的習(xí)慣與能力。
教學(xué)重難點(diǎn)
重點(diǎn):特殊特征與性質(zhì)的探索過程。
難點(diǎn):數(shù)學(xué)說理能力的培養(yǎng)。
教學(xué)準(zhǔn)備
紙張、剪刀。
教學(xué)過程
一、提問。
觀察有哪些特征?
邊_________角__________對角線_________ 。
進(jìn)而導(dǎo)入課題:。
二、探索,概括。
1.探索。
觀察是否軸對稱圖形?是否中心對稱圖形?
可以看作為_______的菱形;
可以看作為_______的矩形。
(讓學(xué)生探索、討論,培養(yǎng)學(xué)生的.合作能力與意識,也可以指名學(xué)生講講他的發(fā)現(xiàn)。)
2.概括。
是中心對稱圖形,也是軸對稱圖形。
可以看作為有一個角是直角的菱形;
可以看作為有一組鄰邊相等的矩形。
三、應(yīng)用舉例。
例3如圖,在ABCD中,求∠ABD、∠DAC、∠DOC的度數(shù)。
(此題要求學(xué)生嘗試說出每一步的根據(jù)是什么,用以培養(yǎng)他們的邏輯思維能力和數(shù)學(xué)說理能力。)
四、鞏固練習(xí)。
1.如果要用給定長度的籬笆圍成一個最大面積的四邊形區(qū)域,那么應(yīng)當(dāng)把這區(qū)域圍成怎樣的四邊形?
2.在下列圖中,有多少個?有多少個矩形?
五、看誰做的又快又正確?
1.用紙剪出一個,與你的同伴比一比,看誰又快又正確?
六、課堂小結(jié)。
這節(jié)課你有什么收獲?學(xué)到了什么?有什么疑問提出來?
七、布置作業(yè)。
補(bǔ)充作業(yè)
八年級數(shù)學(xué)教案 11
一、教材分析:
《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容?v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。
(一)知識目標(biāo):
1、要求學(xué)生掌握正方形的概念及性質(zhì);
2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡單的計算、推理、論證;
(二)能力目標(biāo):
1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;
(三)情感目標(biāo):
1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;
3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
二、學(xué)生分析:
該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
三、教法分析:
針對本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
四、學(xué)法分析:
本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂趣。
五、教學(xué)程序:
第一環(huán)節(jié):相關(guān)知識回顧
以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的.實(shí)質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義
引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)
定理1:正方形的四個角都是直角,四條邊都相等;
定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
3、例題講解
求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學(xué)生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學(xué)提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時強(qiáng)調(diào)證明格式的書寫。從而培養(yǎng)他們語言表達(dá)能力,讓學(xué)生的個性得到充分的展示
4、課堂練習(xí)
第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。
5、課堂小結(jié)
此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實(shí)自己,達(dá)到理想中的完美。
6、作業(yè)設(shè)計
作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。
八年級數(shù)學(xué)教案 12
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生了解運(yùn)用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點(diǎn)難點(diǎn)
重點(diǎn):掌握運(yùn)用平方差公式分解因式。
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問題情境,引入新課
在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項(xiàng)式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項(xiàng)式化成幾個因式乘積的形式。
如果一個多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的`因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
1.請看乘法公式
左邊是整式乘法,右邊是一個多項(xiàng)式,把這個等式反過來就是左邊是一個多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進(jìn)行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
。1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
。1)9(m+n)2—(m—n)2;(2)2x3—8x。
補(bǔ)充例題:判斷下列分解因式是否正確。
。1)(a+b)2—c2=a2+2ab+b2—c2。
。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習(xí)
教科書練習(xí)。
六、作業(yè)
1、教科書習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級數(shù)學(xué)教案 13
一、學(xué)習(xí)目標(biāo):
1.經(jīng)歷探索平方差公式的過程。
2.會推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡單的運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用;
難點(diǎn):理解平方差公式的.結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。
三、合作學(xué)習(xí)
你能用簡便方法計算下列各題嗎?
。1)2001×1999(2)998×1002
導(dǎo)入新課:計算下列多項(xiàng)式的積.
。1)(x+1)(x—1);
。2)(m+2)(m—2)
。3)(2x+1)(2x—1);
。4)(x+5y)(x—5y)。
結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運(yùn)用平方差公式計算:
。1)(3x+2)(3x—2);
。2)(b+2a)(2a—b);
。3)(—x+2y)(—x—2y)。
例2:計算:
(1)102×98;
。2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習(xí)
計算:
(1)(a+b)(—b+a);
。2)(—a—b)(a—b);
。3)(3a+2b)(3a—2b);
。4)(a5—b2)(a5+b2);
。5)(a+2b+2c)(a+2b—2c);
。6)(a—b)(a+b)(a2+b2)。
五、小結(jié)
。╝+b)(a—b)=a2—b2
八年級數(shù)學(xué)教案 14
一、教學(xué)目標(biāo):
1、加深對加權(quán)平均數(shù)的理解
2、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題
3、會用計算器求加權(quán)平均數(shù)的值
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
3、難點(diǎn)的突破方法:
首先應(yīng)先復(fù)習(xí)組中值的定義,在七年級下教材P72中已經(jīng)介紹過組中值定義。因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。
應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡化了計算量。
為了更好的理解這種近似計算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計表,體會表格的實(shí)際意義。
三、例習(xí)題的意圖分析
1、教材P140探究欄目的意圖。
(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。
(2)、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
2、教材P140的思考的意圖。
(1)、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實(shí)際問題
(2)、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。
3、P141利用計算器計算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計算器使用方法產(chǎn)生明顯對比。一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。
四、課堂引入
采用教材原有的引入問題,設(shè)計的幾個問題如下:
(1)、請同學(xué)讀P140探究問題,依據(jù)統(tǒng)計表可以讀出哪些信息
(2)、這里的組中值指什么,它是怎樣確定的`?
(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?
(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。
五、隨堂練習(xí)
1、某校為了了解學(xué)生作課外作業(yè)所用時間的情況,對學(xué)生作課外作業(yè)所用時間進(jìn)行調(diào)查,下表是該校初二某班50名學(xué)生某一天做數(shù)學(xué)課外作業(yè)所用時間的情況統(tǒng)計表
所用時間t(分鐘)人數(shù)
0 0<≤ 6 20 30 40 50 (1)、第二組數(shù)據(jù)的組中值是多少? (2)、求該班學(xué)生平均每天做數(shù)學(xué)作業(yè)所用時間 2、某班40名學(xué)生身高情況如下圖, 請計算該班學(xué)生平均身高 答案1.(1).15. (2)28. 2. 165 六、課后練習(xí): 1、某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表 部門A B C D E F G 人數(shù)1 1 2 4 2 2 5 每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2 該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元? 2、下表是截至到2002年費(fèi)爾茲獎得主獲獎時的年齡,根據(jù)表格中的信息計算獲費(fèi)爾茲獎得主獲獎時的平均年齡? 年齡頻數(shù) 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對所轄的50個居民區(qū)進(jìn)行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。 答案:1.約2.95萬元2.約29歲3.60.54分貝 【八年級數(shù)學(xué)教案】相關(guān)文章: 八年級數(shù)學(xué)教案12-04 八年級上冊數(shù)學(xué)教案01-13 優(yōu)質(zhì)八年級數(shù)學(xué)教案11-02 八年級數(shù)學(xué)教案【薦】02-01 八年級數(shù)學(xué)教案【精】02-01 【精】八年級數(shù)學(xué)教案01-21