有關(guān)八年級數(shù)學(xué)教案模板10篇
作為一名人民教師,通常需要用到教案來輔助教學(xué),教案有助于學(xué)生理解并掌握系統(tǒng)的知識。那么你有了解過教案嗎?下面是小編為大家整理的八年級數(shù)學(xué)教案10篇,歡迎閱讀與收藏。
八年級數(shù)學(xué)教案 篇1
課時目標(biāo)
1.掌握分式、有理式的概念。
2.掌握分式是否有意義、分式的值是否等于零的識別方法。
教學(xué)重點(diǎn)
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學(xué)難點(diǎn):
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學(xué)時間:一課時。
教學(xué)用具:投影儀等。
教學(xué)過程:
一.復(fù)習(xí)提問
1.什么是整式?什么是單項式?什么是多項式?
2.判斷下列各式中,哪些是整式?哪些不是整式?
、伲玬2 ②1+x+y2- ③ ④
⑤ ⑥ ⑦
二.新課講解:
設(shè)問:不是整工式子中,和整式有什么區(qū)別?
小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。
練習(xí):下列各式中,哪些是分式哪些不是?
。1)、、(2)、(3)、(4)、(5)x2、(6)+4
強(qiáng)調(diào):(6)+4帶有是無理式,不是整式,故不是分式。
2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。
練習(xí):課后練習(xí)P6練習(xí)1、2題
設(shè)問:(讓學(xué)生看課本上P5“思考”部分,然后回答問題。)
例題講解:課本P5例題1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。
(板書解題過程。)
3.小結(jié):分式是否有意義的識別方法:當(dāng)分式的分母為零時,分式無意義;當(dāng)分式的分母不等于零時,分式有意義。
增加例題:當(dāng)x取什么值時,分式有意義?
解:由分母x2-4=0,得x=±2。
∴ 當(dāng)x≠±2時,分式有意義。
設(shè)問:什么時候分式的值為零呢?
例:
解:當(dāng) ① 分式的值為零
八年級數(shù)學(xué)教案 篇2
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?
。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點(diǎn)即可畫出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?
(正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線).
3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?
4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點(diǎn)在坐標(biāo)系的什么地方?
二、探究歸納
1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).
2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.
分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.
解因為x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時,x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時,y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).
過點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數(shù)y=kx+b,當(dāng)x=0時,y=b;當(dāng)y=0時,.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.
三、實踐應(yīng)用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.
解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?
八年級數(shù)學(xué)教案 篇3
一、學(xué)習(xí)目標(biāo)及重、難點(diǎn):
1、了解方差的定義和計算公式。
2、理解方差概念的產(chǎn)生和形成的過程。
3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
難點(diǎn):理解方差公式
二、自主學(xué)習(xí):
(一)知識我先懂:
方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用
來表示。
給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。
(二)自主檢測小練習(xí):
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )
(2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )
歸納: 方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強(qiáng)兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?、
測試次數(shù) 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強(qiáng) 10 13 16 14 12
給力提示:先求平均數(shù),在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學(xué)中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學(xué)生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?
四、課堂小結(jié)
方差公式:
給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數(shù),是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):必做題:教材141頁 練習(xí)1、2 選做題:練習(xí)冊對應(yīng)部分習(xí)題
七、學(xué)習(xí)小札記:
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學(xué)教案 篇4
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識技能
一、類比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運(yùn)算.
二、類比異分母分?jǐn)?shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.
數(shù)學(xué)思考
在分式的加減運(yùn)算中,體驗知識的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問題能力.
解決問題
一、會進(jìn)行同分母和異分母分式的加減運(yùn)算.
二、會解決與分式的加減有關(guān)的簡單實際問題.
三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運(yùn)算.
情感態(tài)度
通過師生活動、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使學(xué)生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對立統(tǒng)一的辯證觀點(diǎn).
重點(diǎn)
分式的加減法.
難點(diǎn)
異分母分式的'加減法及簡單的分式混合運(yùn)算.
教學(xué)流程安排
活動流程圖
活動內(nèi)容和目的
活動1:問題引入
活動2:學(xué)習(xí)同分母分式的加減
活動3:探究異分母分式的加減
活動4:發(fā)現(xiàn)分式加減運(yùn)算法則
活動5:鞏固練習(xí)、總結(jié)、作業(yè)
向?qū)W生提出兩個實際問題,使學(xué)生體會學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.
類比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的加減的方法并進(jìn)行簡單運(yùn)算.
回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.
通過以上探究過程,讓學(xué)生發(fā)現(xiàn)分式加減運(yùn)算的法則,通過分式在物理學(xué)的應(yīng)用及簡單混合運(yùn)算,使學(xué)生深化對分式加減運(yùn)算法則的理解.
通過練習(xí)、作業(yè)進(jìn)一步鞏固分式的運(yùn)算.
課前準(zhǔn)備
教具
學(xué)具
補(bǔ)充材料
課件
教學(xué)過程設(shè)計
問題與情境
師生行為
設(shè)計意圖
。刍顒樱保
1.問題一:比較電腦與手抄的錄入時間.
2.問題二;幫幫小明算算時間
所需時間為,
如何求出的值?
3.這里用到了分式的加減,提出本節(jié)課的主題.
教師通過課件展示問題.學(xué)生積極動腦解決問題,提出困惑:
分式如何進(jìn)行加減?
通過實際問題中要用到分式的加減,從而提出問題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.
。刍顒樱玻
1.提出小學(xué)數(shù)學(xué)中一道簡單的分?jǐn)?shù)加法題目.
2.用課件引導(dǎo)學(xué)生用類比法,歸納總結(jié)同分母分式加法法則.
3.教師使用課件展示[例1]
4.教師通過課件出兩個小練習(xí).
教師提出問題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運(yùn)算法則.
學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運(yùn)算方法.
通過例題,讓學(xué)生和教師一起體會同分母分式加減運(yùn)算,同時教師指出運(yùn)算中的.注意事項.
由兩個學(xué)生板書自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).
運(yùn)用類比的方法,從學(xué)生熟知的知識入手,有利于學(xué)生接受新知識.
師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過思考學(xué)會新知識,提高自信心.
讓學(xué)生進(jìn)一步體會同分母分式的加減運(yùn)算.
[活動3]
1.教師以練習(xí)的形式通過“自我發(fā)展的平臺”,向?qū)W生展示這樣一道題.
2.教師提出思考題:
異分母的分式加減法要遵守什么法則呢?
教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的加減.
教師通過課件引導(dǎo)學(xué)生思考,學(xué)生會想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運(yùn)算的方法思路.
由學(xué)生主動提出解決問題的方法,從而激發(fā)了學(xué)生探究問題的興趣.
通過學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,體會學(xué)習(xí)的樂趣.
[活動4]
。保谡Z言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.
2.教師使用課件展示[例2]
3.教師通過課件出4個小練習(xí).
4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;
試用含有R1的式子表示總電阻R
。担處熓褂谜n件展示[例4]
教師提出要求,由學(xué)生說出分式加減法則的字母表示形式.
通過例題,讓學(xué)生和教師一起體會異分母分式加減運(yùn)算,同時教師重點(diǎn)演示通分的過程.
教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡公分母及時指出學(xué)生在通分中出現(xiàn)的問題,由學(xué)生自己完成.
教師引導(dǎo)學(xué)生尋找解決問題的突破口,由師生共同完成,對比物理學(xué)中的計算,體會各學(xué)科知識之間的聯(lián)系.
分式的混合運(yùn)算,師生共同完成,教師提醒學(xué)生注意運(yùn)算順序,通分要仔細(xì).
由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會數(shù)學(xué)符號語言的精練.
讓學(xué)生體會運(yùn)用的公式解決問題的過程.
鍛煉學(xué)生運(yùn)用法則解決問題的能力,既準(zhǔn)確又有速度.
提高學(xué)生的計算能力.
通過分式在物理學(xué)中的應(yīng)用,加強(qiáng)了學(xué)科之間的聯(lián)系,使學(xué)生開闊了視野,讓學(xué)生體會到學(xué)習(xí)數(shù)學(xué)的重要性,體會各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.
提高學(xué)生綜合應(yīng)用知識的能力.
[活動5]
1.教師通過課件出2個分式混合運(yùn)算的小練習(xí).
2.總結(jié):
a)這節(jié)課我們學(xué)習(xí)了哪些知識?你能說一說嗎?
b)⑴方法思路;
c)⑵計算中的主意事項;
d)⑶結(jié)果要化簡.
3.作業(yè):
a)教科書習(xí)題16.2第4、5、6題.
學(xué)生練習(xí)、鞏固.
教師巡視指導(dǎo).
學(xué)生完成、交流.,師生評價.
教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補(bǔ)充完善.
教師布置作業(yè).
鍛煉學(xué)生運(yùn)用法則進(jìn)行運(yùn)算的能力,提高準(zhǔn)確性及速度.
提高學(xué)生歸納總結(jié)的能力.
八年級數(shù)學(xué)教案 篇5
教學(xué)目標(biāo):
1、掌握一次函數(shù)解析式的特點(diǎn)及意義
2、知道一次函數(shù)與正比例函數(shù)的關(guān)系
3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律
教學(xué)重點(diǎn):
1、 一次函數(shù)解析式特點(diǎn)
2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律
教學(xué)難點(diǎn):
1、一次函數(shù)與正比例函數(shù)關(guān)系
2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。
教學(xué)過程:
、瘢岢鰡栴},創(chuàng)設(shè)情境
問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.
分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是
s=570-95t.
說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.
問題2 小張準(zhǔn)備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.
分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.
問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點(diǎn)?
、颍畬(dǎo)入新課
上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱
y是x的正比例函數(shù)。
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
、賧=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?
(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);
(2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);
(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;
(4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).
。5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;
。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
(7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h
(2)L=2b+16,L是b的一次函數(shù).
(3)y=150-5x,y是x的一次函數(shù).
(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).
(5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
(7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)
例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.
分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.
例4 已知y與x-3成正比例,當(dāng)x=4時,y=3.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時,y的值.
解 (1)因為 y與x-3成正比例,所以y=k(x-3).
又因為x=4時,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函數(shù).
(3)當(dāng)x=2.5時,y=3×2.5=7.5.
1. 2
例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達(dá)C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).
(1)當(dāng)此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.
(2)當(dāng)此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.
分析 (1)當(dāng)此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.
(2)當(dāng)此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時間內(nèi),只開進(jìn)油管,不開出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進(jìn)出油時間x(分)的函數(shù)式及相應(yīng)的x取值范圍.
分析 因為在只打開進(jìn)油管的8分鐘內(nèi)、后又打開進(jìn)油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進(jìn)出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.
解 在第一階段:y=3x(0≤x≤8);
在第二階段:y=16+x(8≤x≤16);
在第三階段:y=-2x+88(24≤x≤44).
、螅S堂練習(xí)
根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時,水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過6米3時,超過部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不
超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
、簦n時小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達(dá)式。
、酰n后作業(yè)
1、已知y-3與x成正比例,且x=2時,y=7
(1)寫出y與x之間的函數(shù)關(guān)系.
(2)y與x之間是什么函數(shù)關(guān)系.
(3)計算y=-4時x的值.
2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.
3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.
4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時這些樹約有多高.
5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.
八年級數(shù)學(xué)教案 篇6
總課時:7課時 使用人:
備課時間:第八周 上課時間:第十周
第4課時:5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識與技能
1.在給定的直角坐標(biāo)系下,會根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。
情感態(tài)度與價值觀
通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學(xué)教案 篇7
一、學(xué)習(xí)目標(biāo):
1、會推導(dǎo)兩數(shù)差的平方公式,會用式子表示及用文字語言敘述;
2、會運(yùn)用兩數(shù)差的平方公式進(jìn)行計算。
二、學(xué)習(xí)過程:
請同學(xué)們快速閱讀課本第27—28頁的內(nèi)容,并完成下面的練習(xí)題:
(一)探索
1、計算: (a - b) =
方法一: 方法二:
方法三:
2、兩數(shù)差的平方用式子表示為_________________________;
用文字語言敘述為___________________________ 。
3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?
(二)現(xiàn)學(xué)現(xiàn)用
利用兩數(shù)差的平方公式計算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
(三)合作攻關(guān)
靈活運(yùn)用兩數(shù)差的平方公式計算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)達(dá)標(biāo)訓(xùn)練
1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、計算:
。 a - b) ( x -2y )
3、有一邊長為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?
(四)提升
1、本節(jié)課你學(xué)到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
八年級數(shù)學(xué)教案 篇8
一、回顧交流,合作學(xué)習(xí)
【活動方略】
活動設(shè)計:教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報,匯報時可借助投影儀,要求學(xué)生上臺匯報,最后教師歸納.
【問題探究1】(投影顯示)
飛機(jī)在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?
思路點(diǎn)撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時飛行多少千米,就要知道飛機(jī)在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的長.(3000千米)
【活動方略】
教師活動:操作投影儀,引導(dǎo)學(xué)生解決問題,請兩位學(xué)生上臺演示,然后講評.
學(xué)生活動:獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.
【問題探究2】(投影顯示)
一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?
思路點(diǎn)撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.
【活動方略】
教師活動:操作投影儀,關(guān)注學(xué)生的思維,請兩位學(xué)生上講臺演示之后再評講.
學(xué)生活動:思考后,完成“問題探究2”,小結(jié)方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD為直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此這個零件符合要求.
【問題探究3】
甲、乙兩位探險者在沙漠進(jìn)行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?
思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
【活動方略】
教師活動:操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請兩位學(xué)生上講臺“板演”.
學(xué)生活動:課堂練習(xí),與同伴交流或舉手爭取上臺演示
八年級數(shù)學(xué)教案 篇9
教學(xué)建議
1、平行線等分線段定理
定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。
注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。
定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。
2、平行線等分線段定理的推論
推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。
推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊。
記憶方法:“中點(diǎn)”+“平行”得“中點(diǎn)”。
推論的用途:(1)平分已知線段;(2)證明線段的倍分。
重難點(diǎn)分析
本節(jié)的重點(diǎn)是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。
本節(jié)的難點(diǎn)也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學(xué)生難免會有應(yīng)接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。
教法建議
平行線等分線段定理的引入
生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:
、購纳顚嵗耄缈潭瘸、作業(yè)本、柵欄、等等;
、诳捎脝栴}式引入,開始時設(shè)計一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。
教學(xué)設(shè)計示例
一、教學(xué)目標(biāo)
1、使學(xué)生掌握平行線等分線段定理及推論。
2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。
3、通過定理的變式圖形,進(jìn)一步提高學(xué)生分析問題和解決問題的能力。
4、通過本節(jié)學(xué)習(xí),體會圖形語言和符號語言的和諧美
二、教法設(shè)計
學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析
三、重點(diǎn)、難點(diǎn)
1、教學(xué)重點(diǎn):平行線等分線段定理
2、教學(xué)難點(diǎn):平行線等分線段定理
四、課時安排
l課時
五、教具學(xué)具
計算機(jī)、投影儀、膠片、常用畫圖工具
六、師生互動活動設(shè)計
教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)
七、教學(xué)步驟
【復(fù)習(xí)提問】
1、什么叫平行線?平行線有什么性質(zhì)。
2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?
【引入新課】
由學(xué)生動手做一實驗:每個同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?
(引導(dǎo)學(xué)生把做實驗的條件和得到的結(jié)論寫成一個命題,教師總結(jié),由此得到平行線等分線段定理)
平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。
注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點(diǎn)必須使學(xué)生明確。
下面我們以三條平行線為例來證明這個定理(由學(xué)生口述已知,求證)。
已知:如圖,直線 , 。
求證: 。
分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。
。ㄒ龑(dǎo)學(xué)生找出另一種證法)
分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。
證明:過 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖。
∴
∵ ,
∴
又∵ , ,
∴
∴
為使學(xué)生對定理加深理解和掌握,把知識學(xué)活,可讓學(xué)生認(rèn)識幾種定理的變式圖形,如圖(用計算機(jī)動態(tài)演示)。
引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。
推論1:經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。
再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。
推論2:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。
注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。
接下來講如何利用平行線等分線段定理來任意等分一條線段。
例 已知:如圖,線段 。
求作:線段 的五等分點(diǎn)。
作法:①作射線 。
②在射線 上以任意長順次截取 。
、圻B結(jié) 。
、苓^點(diǎn) 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點(diǎn) 、 、 、 。
、 、 、 就是所求的五等分點(diǎn)。
。ㄕf明略,由學(xué)生口述即可)
【總結(jié)、擴(kuò)展】
小結(jié):
。╨)平行線等分線段定理及推論。
。2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。
。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。
(4)應(yīng)用定理任意等分一條線段。
八、布置作業(yè)
教材P188中A組2、9
九、板書設(shè)計
十、隨堂練習(xí)
教材P182中1、2
八年級數(shù)學(xué)教案 篇10
復(fù)習(xí)第一步::
勾股定理的有關(guān)計算
例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個正方形,則此正方形的面積為.
析解:圖中陰影是一個正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6
勾股定理解實際問題
例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時最低處離地面的最小高度h.
析解:彩旗自然下垂的長度就是矩形DCEF
的對角線DE的長度,連接DE,在Rt△DEF中,根據(jù)勾股定理,
得DE=h=220-150=70(cm)
所以彩旗下垂時的最低處離地面的最小高度h為70cm
與展開圖有關(guān)的計算
例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.
析解:正方體是由平面圖形折疊而成,反之,一個正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的長度.
在矩形ACC’A’中,因為AC=2,CC’=1
所以由勾股定理得AC’=.
∴從頂點(diǎn)A到頂點(diǎn)C’的最短距離為
復(fù)習(xí)第二步:
1.易錯點(diǎn):本節(jié)同學(xué)們的易錯點(diǎn)是:在用勾股定理求第三邊時,分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時要弄清楚解題中的三角形是否為直角三角形.
例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.
錯解:因為a=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒有分清直角三角形的斜邊和直角邊,錯把c當(dāng)成了斜邊.
正解:因為a=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時,一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2
例5:已知一個Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是
錯解:因為Rt△ABC的兩邊長分別為3和4,根據(jù)勾股定理得:第三邊長的平方是32+42=25
剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.
正解:當(dāng)4為直角邊時,根據(jù)勾股定理第三邊長的平方是25;當(dāng)4為斜邊時,第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.
溫馨提示:在用勾股定理時,當(dāng)斜邊沒有確定時,應(yīng)進(jìn)行分類討論.
例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.
錯解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形
【有關(guān)八年級數(shù)學(xué)教案模板10篇】相關(guān)文章:
有關(guān)小學(xué)數(shù)學(xué)教案模板6篇06-02
有關(guān)小學(xué)數(shù)學(xué)教案模板六篇05-23
有關(guān)小學(xué)數(shù)學(xué)教案模板八篇03-28
有關(guān)小學(xué)數(shù)學(xué)教案模板10篇01-13
有關(guān)小學(xué)數(shù)學(xué)教案模板5篇05-05
有關(guān)小學(xué)數(shù)學(xué)教案模板五篇04-22
有關(guān)小學(xué)數(shù)學(xué)教案模板9篇11-03
有關(guān)小學(xué)數(shù)學(xué)教案模板7篇10-07