- 相關(guān)推薦
瀘教版高二下冊數(shù)學(xué) 復(fù)數(shù)的坐標(biāo)表示 教案
作為一名默默奉獻(xiàn)的教育工作者,常常要寫一份優(yōu)秀的教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那要怎么寫好教案呢?下面是小編收集整理的瀘教版高二下冊數(shù)學(xué) 復(fù)數(shù)的坐標(biāo)表示 教案,歡迎閱讀與收藏。
一、教學(xué)目標(biāo)
本課時的教學(xué)目標(biāo)為:①借助直角坐標(biāo)系建立復(fù)平面,掌握復(fù)數(shù)的幾何形式和向量表示;②經(jīng)歷復(fù)平面上復(fù)數(shù)的“形化”過程,理解復(fù)數(shù)與復(fù)平面上的點、向量之間的一一對應(yīng)關(guān)系;③感悟數(shù)學(xué)的釋義:數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué)、筆者認(rèn)為,教學(xué)目標(biāo)總體設(shè)置得較為適切,符合三維框架、修改:“掌握復(fù)數(shù)的幾何形式和向量表示”改為“掌握在復(fù)平面上復(fù)數(shù)的點表示和向量表示”。
二、教學(xué)重點
本課時的教學(xué)重點為:復(fù)數(shù)的坐標(biāo)表示:幾何形式與向量表示、教學(xué)重點設(shè)置得較為適切,部分用詞表達(dá)配合教學(xué)目標(biāo)一并修改、修改:復(fù)數(shù)的坐標(biāo)表示:點表示與向量表示。
三、教學(xué)難點
本課時的教學(xué)難點為:復(fù)數(shù)的代數(shù)形式、幾何形式及向量表示的“同一性”、首先,“同一性”說法有待商榷,這個詞有著嚴(yán)格的定義,使用時需謹(jǐn)慎、其次,經(jīng)過思考,復(fù)數(shù)的代數(shù)表示、點表示及向量表示之間的互相轉(zhuǎn)化才是本課時的教學(xué)難點。
四、教學(xué)過程
。ㄒ唬╊惐纫
本環(huán)節(jié)通過實數(shù)在數(shù)軸上的“形化”表示,類比至復(fù)數(shù),引出復(fù)數(shù)的“幾何形式”:復(fù)平面與點、但在設(shè)問中,有一提問值得商榷:實數(shù)的幾何形式是什么?此提問較為唐突,在試講課與正式課中學(xué)生均表示難以理解,原因如下、①學(xué)生最近發(fā)展區(qū)中未具備“實數(shù)的幾何形式”,②實數(shù)的幾何形式是教師引導(dǎo)學(xué)生對數(shù)的一種有高度的認(rèn)識與表達(dá),屬于理解層面、經(jīng)過思考,修改:①如何“畫”實數(shù)?;②對學(xué)生直接陳述:我們知道,每一個實數(shù)都有數(shù)軸上唯一確定的一個點和它對應(yīng);反過來,數(shù)軸上的每一個點也有唯一的一個實數(shù)和它對應(yīng)。
。ǘ└拍钚率
本環(huán)節(jié)給出復(fù)平面的定義及相關(guān)概念,并且?guī)椭鷮W(xué)生形成復(fù)數(shù)與復(fù)平面上點兩者間的一一對應(yīng)關(guān)系、教學(xué)設(shè)計中對概念的注釋是:表示實數(shù)的點都在實軸上,表示純虛數(shù)的點都在虛軸上,表示虛數(shù)的點在四個象限或虛軸上,表示實數(shù)的點為原點、經(jīng)過思考,修改:表示實數(shù)的點都在實軸上、實軸上的點表示全體實數(shù);表示純虛數(shù)的點都在虛軸上、虛軸上的點表示全體純虛數(shù)與實數(shù);表示虛數(shù)的點不在實軸上;實數(shù)與原點一一對應(yīng)。
(三)例題體驗
本環(huán)節(jié)通過三個例題體驗,落實本課時的教學(xué)重點之一:復(fù)數(shù)的坐標(biāo)表示:點表示;突破本課時的教學(xué)難點:復(fù)數(shù)的代數(shù)表示、點表示及向量表示之間的互相轉(zhuǎn)化、例題1對課本例題作了改編,此例題的設(shè)計意圖為從復(fù)平面上的點出發(fā),去表示對應(yīng)的復(fù)數(shù),并且蘊含了計數(shù)原理中的乘法原理、值得一提的是,在課堂教學(xué)實施過程中,學(xué)生很清晰地建立起了兩者之間的轉(zhuǎn)化關(guān)系,并且使用了乘法原理、例題2的設(shè)計意圖是從復(fù)數(shù)出發(fā)去在復(fù)平面上表示對應(yīng)的點,而例題3的設(shè)計意圖是從單個復(fù)數(shù)與其在復(fù)平面上的對應(yīng)點之間的轉(zhuǎn)化到兩個復(fù)數(shù)與其在復(fù)平面上對應(yīng)點之間的互相轉(zhuǎn)化、例題2與例題3的設(shè)計符合學(xué)生的認(rèn)知規(guī)律,但是在教學(xué)過程中沒有配以圖形來幫助學(xué)生理解,這是整個教學(xué)過程中的最大不足。
(四)概念提升
本環(huán)節(jié)繼復(fù)數(shù)在復(fù)平面上的點表示之后,給出復(fù)數(shù)的向量表示,呈現(xiàn)了完整的復(fù)數(shù)的坐標(biāo)表示、學(xué)生已經(jīng)建構(gòu)起復(fù)數(shù)集中的復(fù)數(shù)與復(fù)平面上的點之間的一一對應(yīng)關(guān)系,結(jié)合他們的最近發(fā)展區(qū):建立了直角坐標(biāo)系的平面中的任意點均與唯一的位置向量一一對應(yīng),從而較為順利地架構(gòu)起復(fù)數(shù)與向量的一一對應(yīng)關(guān)系、設(shè)計的例題是由筆者改編的,整合了向量與復(fù)數(shù)、點與復(fù)數(shù)以及向量與點之間的互相轉(zhuǎn)化,鞏固三者之間的一一對應(yīng)關(guān)系、值得一提的是,設(shè)計的第3小問具有開放性,啟發(fā)學(xué)生去探究由向量加法的坐標(biāo)表示引出復(fù)數(shù)加法法則,在課堂教學(xué)實踐中,已有學(xué)生產(chǎn)生這樣的思考。
在之后的教研組研評課中,老師們給出了對這節(jié)課的認(rèn)可與中肯的建議,讓筆者受益匪淺,筆者經(jīng)過思考已經(jīng)在上文中的各環(huán)節(jié)修改處得以體現(xiàn)落實、不過仍然有一點困惑,有老師提出甚至筆者備課時也有這樣的猶豫:本課時是否將下一課時“復(fù)數(shù)的!币徊⒔o出、筆者在不斷思考教材分割成兩課時的用意,結(jié)合試講與上課的兩次實踐也說明,筆者所在學(xué)校的學(xué)生更適合這樣的分割,第一課時讓學(xué)生從不同角度感受復(fù)數(shù),第二課時用模來鞏固深化復(fù)數(shù)的坐標(biāo)表示、本課時的課題是復(fù)數(shù)的坐標(biāo)表示,蘊含了點坐標(biāo)表示與向量坐標(biāo)表示兩塊,第一課時先打開認(rèn)識的視角,第二課時通過模來深入體驗、
當(dāng)然教無定法,根據(jù)學(xué)情、因材施教,在理解教材設(shè)計意圖的基礎(chǔ)上對教材進(jìn)行科學(xué)合理的改編也是很有必要的。
【瀘教版高二下冊數(shù)學(xué) 復(fù)數(shù)的坐標(biāo)表示 教案】相關(guān)文章:
人教版數(shù)學(xué)下冊《用坐標(biāo)表示平移》教學(xué)反思04-27
瀘教版四年級數(shù)學(xué)復(fù)習(xí)指導(dǎo)教案04-28
冀教版《數(shù)學(xué)》六年級數(shù)學(xué)下冊教案04-29
川教版教案01-11
高三數(shù)學(xué)競賽復(fù)數(shù)講義教案04-25