- 相關推薦
完全平方公式分解因式教案設計
學習任務
1、了解完全平方公式的特征,會用完全平方公式進行因式分解.
2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學生逆向思維能力和推理能力.
3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學生觀察能力,實踐能力和創(chuàng)新能力.
學習建議教學重點:
運用完全平方公式分解因式.
教學難點:
掌握完全平方公式的特點.
教學資源
使用電腦、投影儀.
學習過程學習要求
自學準備與知識導學:
1、計算下列各式:
、(a+4)2=__________________⑵(a-4)2=__________________
⑶(2x+1)2=__________________⑷(2x-1)2=__________________
下面請你根據上面的等式填空:
、臿2+8a+16=_____________⑵a2-8a+16=_____________
⑶4x2+4x+1=_____________⑷4x2-4x+1=_____________
問題:對比以上兩題,你有什么發(fā)現(xiàn)?
2、把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來就得到__________________和__________________,這兩個等式就是因式分解中的完全平方公式.它們有什么特征?
若用△代表a,○代表b,兩式可表示為△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2.
3、a2-4a-4符合公式左邊的特征嗎?為什么?
4、填空:a2+6a+9符合嗎?______相當于a,______相當于b.
a2+6a+9=a2+2()()+()2=()2
a2-6a+9=a2-2()()+()2=()2
可以把形如a2+2ab+b2與a2-2ab+b2的多項式通過完全平方公式進行因式分解.
學習交流與問題研討:
1、例題一(準備好,跟著老師一起做!)
把下列各式分解因式:⑴x2+10x+25⑵4a2-36ab+81b2
2、例題二(有困難,大家一起討論吧!)
把下列各式分解因式:⑴16a4+8a2+1⑵(m+n)2-4(m+n)+4
3、變式訓練:若把16a4+8a2+1變形為16a4-8a2+1會怎么樣呢?
4、運用平方差公式、完全平方公式,把一個多項式分解因式的方法叫做運用公式法.分析:重點是指出什么相當于公式中的a、b,并適當?shù)母膶憺楣降男问?
分析:許多情況下,不一定能直接使用公式,需要經過適當?shù)慕M合,變形成公式的形式.
強調:分解因式必須分解到每一個因式都不能再分為止.
練習檢測與拓展延伸:
1、鞏固練習
、畔铝心苤苯佑猛耆椒焦椒纸獾氖()
A、x2+2xy-y2B、-x2+2xy+y2C、x2+xy+y2D、x2-xy+y2
、品纸庖蚴剑-a2+2ab-b2=_________,-a2-2ab-b2=_________.
、钦n本P75練一練1、2.
2、提升訓練
、藕啽阌嬎悖20042-4008×2005+20052
、埔阎猘2-2a+b2+4b+5=0,求(a+b)2005的值.
、侨舭補2+6a+9誤寫為a2+6a+9-1即a2+6a+8如何分解?
3、當堂測試
補充習題P42-431、2、3、4.
分析:許多情況下,不一定能直接使用公式,需要經過適當?shù)慕M合,變形成公式的形式.
課后反思或經驗總結:
1、本節(jié)課是在學生已經了解因式分解的意義,掌握了提公因式法、平方差公式的基礎上進行教學的,是運用類比的方法,引導學生借助上一節(jié)課學習平方差公式分解因式的經驗,探索因式分解的完全平方公式法,即先觀察公式的特點,再直接根據公式因式分解.
【完全平方公式分解因式教案設計】相關文章:
完全平方公式教案設計01-24
完全平方公式教案04-25
因式分解公式06-04
《完全平方公式》教案06-03
數(shù)學教案完全平方公式12-30
數(shù)學教案:完全平方公式11-23
《完全平方公式》教學反思(精選10篇)03-31
因式分解教案設計04-25
運用完全平方公式計算的幾種類型04-26
因式分解教案03-19