- 相關(guān)推薦
中數(shù)學(xué)說(shuō)課稿范文《導(dǎo)數(shù)的概念》
導(dǎo)數(shù)是近代數(shù)學(xué)中微積分的核心概念之一,是一種思想方法,這種思想方法是人類(lèi)智慧的驕傲.《導(dǎo)數(shù)的概念》這一節(jié)內(nèi)容,大致分成四個(gè)課時(shí),我主要針對(duì)第三課時(shí)的教學(xué),談?wù)勎业睦斫馀c設(shè)計(jì),敬請(qǐng)各位專(zhuān)家斧正.
一、教材分析
1.1編者意圖《導(dǎo)數(shù)的概念》分成四個(gè)部分展開(kāi),即:“曲線(xiàn)的切線(xiàn)”,“瞬時(shí)速度”,“導(dǎo)數(shù)的概念”,“導(dǎo)數(shù)的幾何意義”,編者意圖在哪里呢?用前兩部分作為背景,是為了引出導(dǎo)數(shù)的概念;介紹導(dǎo)數(shù)的幾何意義,是為了加深對(duì)導(dǎo)數(shù)的理解.從而充分借助直觀來(lái)引出導(dǎo)數(shù)的概念;用極限思想抽象出導(dǎo)數(shù);用函數(shù)思想拓展、完善導(dǎo)數(shù)以及在應(yīng)用中鞏固、反思導(dǎo)數(shù),教材的顯著特點(diǎn)是從具體經(jīng)驗(yàn)出發(fā),向抽象和普遍發(fā)展,使探究知識(shí)的過(guò)程簡(jiǎn)單、經(jīng)濟(jì)、有效.
1.2導(dǎo)數(shù)概念在教材的地位和作用“導(dǎo)數(shù)的概念”是全章核心.不僅在于它自身具有非常嚴(yán)謹(jǐn)?shù)慕Y(jié)構(gòu),更重要的是,導(dǎo)數(shù)運(yùn)算是一種高明的數(shù)學(xué)思維,用導(dǎo)數(shù)的運(yùn)算去處理函數(shù)的性質(zhì)更具一般性,獲得更為理想的結(jié)果;把運(yùn)算對(duì)象作用于導(dǎo)數(shù)上,可使我們擴(kuò)展知識(shí)面,感悟變量,極限等思想,運(yùn)用更高的觀點(diǎn)和更為一般的方法解決或簡(jiǎn)化中學(xué)數(shù)學(xué)中的不少問(wèn)題;導(dǎo)數(shù)的方法是今后全面研究微積分的重要方法和基本工具,在在其它學(xué)科中同樣具有十分重要的作用;在物理學(xué),經(jīng)濟(jì)學(xué)等其它學(xué)科和生產(chǎn)、生活的各個(gè)領(lǐng)域都有廣泛的應(yīng)用.導(dǎo)數(shù)的出現(xiàn)推動(dòng)了人類(lèi)事業(yè)向前發(fā)展.
1.3教材的內(nèi)容剖析知識(shí)主體結(jié)構(gòu)的比較和知識(shí)的遷移類(lèi)比如下表:
表1.知識(shí)主體結(jié)構(gòu)比較
通過(guò)比較發(fā)現(xiàn):求切線(xiàn)的斜率和物體的瞬時(shí)速度,這兩個(gè)具體問(wèn)題的解決都依賴(lài)于求函數(shù)的極限,一個(gè)是“微小直角三角形中兩直角邊之比”的極限,一個(gè)是“位置改變量與時(shí)間改變量之比”的極限,如果舍去問(wèn)題的具體含義,都可以歸結(jié)為一種相同形式的極限,即“平均變化率”的極限.因此以?xún)蓚(gè)背景作為新知的生長(zhǎng)點(diǎn),不僅使新知引入變得自然,而且為新知建構(gòu)提供了有效的類(lèi)比方法.
1.4重、難點(diǎn)剖析
重點(diǎn):導(dǎo)數(shù)的概念的形成過(guò)程.
難點(diǎn):對(duì)導(dǎo)數(shù)概念的理解.
為什么這樣確定呢?導(dǎo)數(shù)概念的形成分為三個(gè)的層次:f(x)在點(diǎn)x0可導(dǎo)→f(x)在開(kāi)區(qū)間(,b)內(nèi)可導(dǎo)→f(x)在開(kāi)區(qū)間(,b)內(nèi)的導(dǎo)函數(shù)→導(dǎo)數(shù),這三個(gè)層次是一個(gè)遞進(jìn)的過(guò)程,而不是專(zhuān)指哪一個(gè)層次,也不是幾個(gè)層次的簡(jiǎn)單相加,因此導(dǎo)數(shù)概念的形成過(guò)程是重點(diǎn);教材中出現(xiàn)了兩個(gè)“導(dǎo)數(shù)”,“兩個(gè)可導(dǎo)”,初學(xué)者往往會(huì)有這樣的困惑,“導(dǎo)數(shù)到底是個(gè)什么東西?一個(gè)函數(shù)是不是有兩種導(dǎo)數(shù)呢?”,“導(dǎo)函數(shù)與導(dǎo)數(shù)是怎么統(tǒng)一的?”.事實(shí)上:(1)f(x)在點(diǎn)x0處的導(dǎo)數(shù)是這一點(diǎn)x0到x0+△x的變化率的極限,是一個(gè)常數(shù),區(qū)別于導(dǎo)函數(shù).(2)f(x)的導(dǎo)數(shù)是對(duì)開(kāi)區(qū)間內(nèi)任意點(diǎn)x而言,是x到x+△x的變化率的極限,是f(x)在任意點(diǎn)的變化率,其中滲透了函數(shù)思想.(3)導(dǎo)函數(shù)就是導(dǎo)數(shù)!是特殊的函數(shù):先定義f(x)在x0處可導(dǎo)、再定義f(x)在開(kāi)區(qū)間(,b)內(nèi)可導(dǎo)、最后定義f(x)在開(kāi)區(qū)間的導(dǎo)函數(shù).(4)y=f(x)在x0處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在x=x0處的函數(shù)值,表示為這也是求f′(x0)的一種方法.初學(xué)者最難理解導(dǎo)數(shù)的概念,是因?yàn)槌鯇W(xué)者最容易忽視或混淆概念形成過(guò)程中幾個(gè)關(guān)鍵詞的區(qū)別和聯(lián)系,會(huì)出現(xiàn)較大的分歧和差別,要突破難點(diǎn),關(guān)鍵是找到“f(x)在點(diǎn)x0可導(dǎo)”、“f(x)在開(kāi)區(qū)間的導(dǎo)函數(shù)”和“導(dǎo)數(shù)”之間的聯(lián)系,而要弄清這種聯(lián)系的最好方法就是類(lèi)比!用“速度與導(dǎo)數(shù)”進(jìn)行類(lèi)比.
【中數(shù)學(xué)說(shuō)課稿《導(dǎo)數(shù)的概念》】相關(guān)文章:
辯論中如何暗中更換概念的技巧09-11
《數(shù)學(xué)廣角》說(shuō)課稿范文09-12
小學(xué)數(shù)學(xué)《周長(zhǎng)》說(shuō)課稿模板08-04
小學(xué)數(shù)學(xué)《秒的認(rèn)識(shí)》說(shuō)課稿05-23
數(shù)學(xué)說(shuō)課稿常見(jiàn)模板05-27