午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

《3的倍數(shù)的特征》教學(xué)反思

時(shí)間:2023-04-11 12:26:31 教學(xué)反思 我要投稿

《3的倍數(shù)的特征》教學(xué)反思

  身為一位優(yōu)秀的教師,我們的任務(wù)之一就是課堂教學(xué),通過教學(xué)反思可以有效提升自己的教學(xué)能力,那么寫教學(xué)反思需要注意哪些問題呢?以下是小編整理的《3的倍數(shù)的特征》教學(xué)反思,歡迎大家分享。

《3的倍數(shù)的特征》教學(xué)反思

《3的倍數(shù)的特征》教學(xué)反思1

  本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個(gè)別同學(xué)可能是受上節(jié)課的影響,說出了:個(gè)位上是0、1、2、3、4、5、6、7、8、9的數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。

  然后我就出示計(jì)數(shù)器,依次撥出3的倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會(huì)到有幾顆珠子就是各個(gè)數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),也就是各個(gè)數(shù)位上數(shù)的和是3的`倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。說實(shí)話,學(xué)生對于這一規(guī)律,不是很容易接受,在后來的練習(xí)中,才慢慢體會(huì)到。

  “想想做做”的五道題設(shè)計(jì)得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。

《3的倍數(shù)的特征》教學(xué)反思2

  2、3、5倍數(shù)的特征我設(shè)計(jì)的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,但我由于對教材的把握不夠,時(shí)間用到2、5倍數(shù)上的較多。以至于對3的倍數(shù)特征探究不到位。

  好的開始等于成功了一半。課伊始,我設(shè)計(jì)了搶“30”的游戲,目的是讓學(xué)生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個(gè)游戲沒讓學(xué)生部明白要求沒有能提高學(xué)生的興趣。意義不到。數(shù)學(xué)學(xué)習(xí)過程中應(yīng)該是觀察、發(fā)現(xiàn)、驗(yàn)證、結(jié)論等探索性與挑戰(zhàn)性活動(dòng)。首先讓學(xué)生獨(dú)圈出寫出100以內(nèi)2、5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)他們的特征,而這只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。但我對這部分的處理太過于復(fù)雜零碎。以至于用的時(shí)間過多。比如說2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的.重點(diǎn)。

  小組合作,發(fā)揮團(tuán)體的作用,動(dòng)手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學(xué)生的之一能力傾聽能等等還需進(jìn)一步訓(xùn)練。

《3的倍數(shù)的特征》教學(xué)反思3

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學(xué)生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測“個(gè)位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业腵預(yù)設(shè)之中。

  下面進(jìn)入驗(yàn)證環(huán)節(jié),先讓學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過交流,學(xué)生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進(jìn)入到動(dòng)手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

  “試一試”是數(shù)學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。

《3的倍數(shù)的特征》教學(xué)反思4

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出3的倍數(shù)特征。

  但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個(gè)學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的`特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個(gè)學(xué)生的發(fā)現(xiàn),加以理解,鞏固。

  這節(jié)課結(jié)束后,我感覺以下方面做得不好。

  1、備課不充分。自己在備課時(shí)沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);

  2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時(shí),都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。

《3的倍數(shù)的特征》教學(xué)反思5

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。

  我從學(xué)生的已有認(rèn)知出發(fā),引導(dǎo)學(xué)生先進(jìn)行合理的猜想,進(jìn)而引發(fā)學(xué)生從不同的角度驗(yàn)證自己的猜想,通過驗(yàn)證,學(xué)生自我否定了自己的猜想。此時(shí)學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來調(diào)動(dòng)學(xué)生學(xué)習(xí)的欲望,增強(qiáng)學(xué)生主動(dòng)探究意識(shí),有利于后面的探究學(xué)習(xí)。他們還認(rèn)為在我們實(shí)際生活中,當(dāng)你解決一個(gè)新問題時(shí),一般沒有人告訴你解決這個(gè)問題會(huì)碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識(shí),然后,你要在原來的知識(shí)庫中去提取并靈活地應(yīng)用原有的知識(shí)。

  新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會(huì)出現(xiàn)各種各樣的`錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識(shí)地去避免學(xué)生犯錯(cuò)誤。因?yàn)檎n堂是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動(dòng)的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會(huì)和權(quán)利。

《3的倍數(shù)的特征》教學(xué)反思6

  【初次實(shí)踐】

  課始,讓學(xué)生任意報(bào)數(shù),師生比賽誰先判斷出這個(gè)數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個(gè)“不識(shí)時(shí)務(wù)者”打亂了課前的預(yù)想!袄蠋,我知道其中的秘密,只要把各個(gè)數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對!在數(shù)學(xué)書上就有這句話!薄钟袔讉(gè)學(xué)生偷偷地打開了數(shù)學(xué)書!霸趺崔k?”謎底都被學(xué)生揭開了。面對這一生成,我沒有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書在黑板上,讓學(xué)生理解這句話的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來,驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……

  [反思]

  課堂上經(jīng)常會(huì)出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識(shí)和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識(shí)的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個(gè)例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn),而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動(dòng),也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?

  【再次實(shí)踐】

 。ㄅc第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個(gè)數(shù)是不是3的倍數(shù),這時(shí)一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來。)

  師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了2、5的倍數(shù)的特征只和什么有關(guān)?

  生:只和一個(gè)數(shù)的個(gè)位有關(guān)。

  師:與今天學(xué)習(xí)的知識(shí)比較一下,你有什么疑問嗎?

  生1:為什么判斷一個(gè)數(shù)是不是3的倍數(shù)只看個(gè)位不行?

  生2:為什么判斷一個(gè)數(shù)是不是2、5的倍數(shù)只看個(gè)位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?

  ……

  師:同學(xué)們思考問題確實(shí)比較深入,提出了非常有研究價(jià)值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個(gè)位有關(guān)。

  (學(xué)生嘗試探索,教師適時(shí)引導(dǎo)學(xué)生從簡單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。)

  生1:我在擺小棒時(shí)發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個(gè)位擺幾就可以了。

  生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個(gè)數(shù)都可以拆成一個(gè)整十?dāng)?shù)加個(gè)位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個(gè)數(shù)的個(gè)位是幾就決定了它是否是2、5的倍數(shù)。

  師:同學(xué)們想到用“拆數(shù)”的方法來研究,是個(gè)好辦法。

  生3:是否是3的倍數(shù)只看個(gè)位就不行了。比如13,雖然個(gè)位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個(gè)位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個(gè)位上的數(shù)合起來是不是3的倍數(shù)就行了。

  生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。

  生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時(shí)就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。

  生(部分):對。

  生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?

  生6:也就是說整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個(gè)3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個(gè)位上的和是不是3的倍數(shù)就可以了。

  師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?

  學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來越清晰。

  師:同學(xué)們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征。現(xiàn)在你還有哪些新的探索想法呢?

  生1:我想知道4的倍數(shù)有什么特征?

  生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎、整千?shù)一定都是4的倍數(shù)。

  師:你能把學(xué)到的方法及時(shí)應(yīng)用,非常棒!

  生3:7或9的倍數(shù)有什么特征呢?

  ……

  師:同學(xué)們又提出了一些新的、非常有價(jià)值的問題,課后可以繼續(xù)進(jìn)行探索。

  [反思]

  1. 找準(zhǔn)知識(shí)間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來研究。于是新舊知識(shí)之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的`倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺地進(jìn)入到自主探究的狀態(tài)之中。知識(shí)不是孤立的,新舊知識(shí)有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識(shí)間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。

  2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識(shí)的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會(huì)產(chǎn)生困惑,這種困惑有時(shí)是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ,促使探究活?dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。

  3. 溝通知識(shí)間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時(shí)溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對數(shù)的倍數(shù)特征的整體認(rèn)識(shí),感悟數(shù)學(xué)其實(shí)就是以一馭萬,以簡馭繁。課堂不是句號(hào),學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對于一堂課知識(shí)的掌握,而應(yīng)著眼于學(xué)生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動(dòng)力。

《3的倍數(shù)的特征》教學(xué)反思7

  3的倍數(shù)的特征的教學(xué)與2、5倍數(shù)的特征難度上有不同,因?yàn)?、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出(根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點(diǎn)預(yù)習(xí)題。

  1、給出一些數(shù)讓學(xué)生先判斷哪些數(shù)是3的倍數(shù)。并讓學(xué)生說一說你是怎么判斷的?

  2、從以上的3的倍數(shù)進(jìn)行思考:

 。1)、3的倍數(shù)與它個(gè)位上的數(shù)有關(guān)系嗎?

 。2)、 3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?

  新課時(shí)讓學(xué)生從上面的練習(xí)中去發(fā)現(xiàn)了什么,從而歸納3的'倍數(shù)的特征:一個(gè)數(shù)的各個(gè)數(shù)位上的數(shù)字和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)

  然后再讓每個(gè)同學(xué)任意寫一個(gè)3的倍數(shù),再看看這個(gè)數(shù)的各個(gè)數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學(xué)生說出方法和思路。

  經(jīng)過以上這些活動(dòng)后學(xué)生都能對一個(gè)數(shù)是不是3的倍數(shù)進(jìn)行簡單的判斷。特別是學(xué)生對3的倍數(shù)特征的判斷大多數(shù)的學(xué)生能先求出各個(gè)數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進(jìn)行判斷,效果很好。

《3的倍數(shù)的特征》教學(xué)反思8

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測:“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。

  下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的'倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動(dòng)手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

  “試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。可惜在這一點(diǎn)上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。

  整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。

《3的倍數(shù)的特征》教學(xué)反思9

  今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個(gè)不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點(diǎn)?學(xué)生一時(shí)很難發(fā)現(xiàn),仍從個(gè)位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時(shí)我心里有點(diǎn)擔(dān)心怎么看不來呢?,我啟發(fā)學(xué)生再看看個(gè)位和十位上的`數(shù),通過交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個(gè)數(shù)的數(shù)字加起來的和除以3都是正好除的,我讓學(xué)生用這個(gè)發(fā)現(xiàn)對書上第76頁的表格100以內(nèi)的數(shù)進(jìn)行驗(yàn)證一下,學(xué)生驗(yàn)證后我又讓學(xué)生從100以外的數(shù)來驗(yàn)證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時(shí)學(xué)生思考時(shí)就不會(huì)漏寫了。最后,通過后面的練習(xí),我覺得在教學(xué)某些知識(shí)時(shí),最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實(shí)踐中自己得出結(jié)論,才能牢固地掌握知識(shí)。

《3的倍數(shù)的特征》教學(xué)反思10

  在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對本節(jié)課的教學(xué)情況進(jìn)行反思。

  一、跨年級(jí)學(xué)習(xí)新數(shù)學(xué)知識(shí),知識(shí)銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。

  雖然2、5、3的倍數(shù)的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識(shí)銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時(shí)難以掌握。

  二、為了體現(xiàn)“容量大”,教學(xué)延堂。

  備課時(shí)也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的'倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時(shí)間和機(jī)會(huì)就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來可能會(huì)有一定的難度,最好單獨(dú)作為一課時(shí)學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測試拖堂了。

  三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。

  高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會(huì)學(xué),學(xué)會(huì),在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時(shí)安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。

《3的倍數(shù)的特征》教學(xué)反思11

  《3的倍數(shù)的特征》的教學(xué)是五下數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中一個(gè)知識(shí)點(diǎn),是在學(xué)生已認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。因而在《3的倍數(shù)的特征》的開始階段我復(fù)習(xí)了2、5的倍數(shù)的特征之后就讓學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2。5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中, 得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。

  在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把 3 的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征 。學(xué)生在經(jīng)歷了猜測、分析、判斷、驗(yàn)證、概括、等一系列的數(shù)學(xué)活動(dòng)后感悟和理解了3的倍數(shù)的特征,引導(dǎo)學(xué)生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的.倍數(shù)。從而,使學(xué)生明確3的倍數(shù)的特征,然后進(jìn)行練習(xí)與拓展。這樣的探究學(xué)習(xí)比我們老師直接教給他們答案要扎實(shí)許多,之后的知識(shí)應(yīng)用學(xué)生就相應(yīng)比較靈活和自如,效果較好。

  這節(jié)課結(jié)束后,我感覺最大的缺憾之處在最后的拓展練習(xí)上,由于自己事先練習(xí)下水沒有做足,所以誤導(dǎo)了學(xué)生。題目如下:“從3、0、4、5這四個(gè)數(shù)中,選出兩個(gè)數(shù)字組成一個(gè)兩位數(shù),分別滿足以下條件:1、是3的倍數(shù)。2、同時(shí)是2和3的倍數(shù)。3、同時(shí)是3和5的倍數(shù)。4、同時(shí)是2、3和5的倍數(shù)!睂W(xué)生問要寫幾個(gè)時(shí),我回答如果數(shù)量很多至少寫3個(gè)。呵呵,其實(shí)此題不需要如此考慮,因?yàn)樗鼈兊臄?shù)量都有限。

  希望以后自己的教學(xué)會(huì)更扎實(shí)起來。

《3的倍數(shù)的特征》教學(xué)反思12

  “能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個(gè)特點(diǎn):

  1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。

  本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運(yùn)用特征進(jìn)行正確判斷,同時(shí)十分重視學(xué)生學(xué)習(xí)過程的體驗(yàn)和方法的滲透,讓學(xué)生通過“猜測——驗(yàn)證——提出新的假設(shè)——驗(yàn)證”的`探索過程來發(fā)現(xiàn)知識(shí),獲得結(jié)論,并感悟方法。

  2、理性處理教材,使教學(xué)內(nèi)容生活化。

  教科書只是提供了學(xué)生學(xué)習(xí)活動(dòng)的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動(dòng)性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計(jì)例題,通過用“0——9”十個(gè)數(shù)字組成能被整除的三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)藏著豐富的數(shù)學(xué)問題。開課時(shí)收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時(shí)也縮短了教師和學(xué)生的距離,課后“你再長幾歲,這個(gè)歲數(shù)就能被3整除”這一開放題富有情趣,給學(xué)生留下了深刻的印象。

  3、著力改變學(xué)生的學(xué)習(xí)方式。

  學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過自主選教學(xué)內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論等合作探究活動(dòng),獲得教學(xué)知識(shí)、感悟方法。如在課的第二階段,設(shè)計(jì)三個(gè)層次的教學(xué)活動(dòng),讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過學(xué)生猜測、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過計(jì)算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時(shí)也使學(xué)生品嘗了成功的喜悅。

  4、合理定位教師角色,營造民主、和諧的學(xué)習(xí)氛圍。

  課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者?梢詮囊韵聝煞矫婵闯觯阂皇菑膸熒顒(dòng)的時(shí)間分配上,二是從分層探究、有針對性的適當(dāng)引導(dǎo)上。這節(jié)課從開始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開放的探究方式,

《3的倍數(shù)的特征》教學(xué)反思13

  心理學(xué)原理表明,新異的刺激可以引起學(xué)生的注意和興趣。在教學(xué)中,根據(jù)不同的教材和要求,采取不同的教學(xué)方法,能夠引起學(xué)生學(xué)習(xí)的興趣,有利于創(chuàng)設(shè)良好的課堂氣氛。

  教學(xué)3的倍數(shù)特征這一課時(shí),教師組織學(xué)生進(jìn)行下列鞏固練習(xí):

  下列數(shù)中3的倍數(shù)有:()

  1435451003328767488

  學(xué)生利用3的倍數(shù)的特征一下子就回答了上面的問題,得到了老師的肯定。這時(shí)我接著說:“我們來一場老師、學(xué)生打擂臺(tái)怎么樣?看誰說的3的倍數(shù)的數(shù)最多,我們看誰能考倒老師。”這時(shí)同學(xué)們興趣盎然,紛紛出題來考老師。

  生:42

  師:111

  生:78

  師:57

  生:81

  師:20xx

  生:6891

  …………

  這時(shí)師故意出錯(cuò):369041

  學(xué)生馬上發(fā)現(xiàn)了這個(gè)數(shù)不是3的倍數(shù),師問:“你能不能改一改其中的某個(gè)數(shù)字使它成為3的倍數(shù)。”

  生:“可以將1改為2!

  生:“可以將4改為5!

  生:“可以將1改為5!

  生:“可以將1改為8!

  生:“可以將4改為2”

  生:“可以將4改為8”

  學(xué)生回答完后,我及時(shí)提問:“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學(xué)生通過思考回答:“因?yàn)?、6、3、9每一個(gè)數(shù)都是3的倍數(shù),所以只要改4和1這兩個(gè)數(shù)就行了!边@時(shí)我及時(shí)指出:“判斷一個(gè)數(shù)是不是3的倍數(shù)可以用篩選法來判斷,在各數(shù)位的數(shù)字中先篩去3的倍數(shù)或和為3的倍數(shù)的數(shù)字,若余下的`數(shù)字之和是3的倍數(shù),原數(shù)就是3的倍數(shù),否則就不是!边@時(shí)我逐漸地出示下列這組數(shù)要求學(xué)生馬上判斷是否3的倍數(shù)。

  56

  561

  5617

  56178

  561784

  5617849

  …………

  這個(gè)鞏固練習(xí),有效地調(diào)動(dòng)了學(xué)生的積極性,不斷激起學(xué)生認(rèn)知的內(nèi)驅(qū)力,使學(xué)生在探索的過程中,主動(dòng)學(xué)習(xí)、主動(dòng)探索,帶來了內(nèi)心的滿足感。

《3的倍數(shù)的特征》教學(xué)反思14

  《3的倍數(shù)的特征》是五年級(jí)下冊數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個(gè)知識(shí)點(diǎn),是在學(xué)生已經(jīng)認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。

  因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個(gè)數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。

  為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個(gè)數(shù),利用這一結(jié)論來驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識(shí)到:找出某個(gè)規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。

  為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時(shí),我還把一些數(shù)各個(gè)數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時(shí),學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的`倍數(shù)。

  利用2、5、3的倍數(shù)的特征來判斷一個(gè)數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。

  這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動(dòng),獲得了數(shù)學(xué)知識(shí)。學(xué)生的學(xué)習(xí)能動(dòng)性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時(shí)也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。

《3的倍數(shù)的特征》教學(xué)反思15

  《3 的倍數(shù)和特征》一課是在學(xué)生自主探究2、5的倍數(shù)的特征的基礎(chǔ)上進(jìn)一步學(xué)習(xí),我從學(xué)生的已有基礎(chǔ)出發(fā),把復(fù)習(xí)和導(dǎo)入有機(jī)結(jié)合起來,通過2、5的倍數(shù)特征的復(fù)習(xí),設(shè)置了“陷阱”,引導(dǎo)學(xué)生進(jìn)行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認(rèn)知沖突,激發(fā)學(xué)生的求知欲望,經(jīng)歷新知的產(chǎn)生過程。

  一、引發(fā)猜想,產(chǎn)生沖突。

  前一課時(shí),學(xué)生在發(fā)現(xiàn)2、5的倍數(shù)特征時(shí),都是從個(gè)位上研究起的,所以在復(fù)習(xí)舊知時(shí),我也特意強(qiáng)調(diào)了這一點(diǎn)。接下來我引導(dǎo)學(xué)生猜想3 的倍數(shù)特征是什么時(shí),不少學(xué)生知識(shí)遷移,提出:個(gè)位上是3、6、9的數(shù)應(yīng)該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當(dāng)然需要驗(yàn)證,很快就有學(xué)生在觀察百數(shù)表后提出問題:個(gè)位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學(xué)生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學(xué)生就開始了繁雜的計(jì)算,這個(gè)環(huán)節(jié)我給了他們時(shí)間慢慢去算,用意在于體會(huì)這種計(jì)算的不方便,從而去想有沒有更好的方法去判斷一個(gè)數(shù)是否是3 的倍數(shù)。

  二、自主探究,建構(gòu)特征

  找3 的倍數(shù)的特征是本節(jié)課的難點(diǎn),我處理這個(gè)難點(diǎn)時(shí)力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、指導(dǎo)者、參與者。整節(jié)課中,始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索并掌握找一個(gè)3的倍數(shù)的特征的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識(shí)。

  在完成100以內(nèi)的數(shù)表中找出所有3 的倍數(shù)后,我引導(dǎo)學(xué)生觀察發(fā)現(xiàn)3的倍數(shù)的個(gè)位可以是0~9中任何一個(gè)數(shù)字,要判斷一個(gè)數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個(gè)位,打破了學(xué)生的認(rèn)知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問題。這個(gè)問題的解決需要借助計(jì)數(shù)器,于是我給學(xué)生準(zhǔn)備了簡易計(jì)數(shù)器,讓學(xué)生多次撥數(shù)后,觀察算珠的個(gè)數(shù)有什么共同的'特點(diǎn)。反應(yīng)比較快的學(xué)生就有了發(fā)現(xiàn):所用的算珠個(gè)數(shù)都是3 的倍數(shù)。在學(xué)生提出這個(gè)猜想后,全班學(xué)生再一次進(jìn)行驗(yàn)證第二個(gè)猜想,這個(gè)驗(yàn)證也是在突破難點(diǎn),學(xué)生在驗(yàn)證中掌握難點(diǎn)。同時(shí),我也讓學(xué)生對比了之前所用的方法,體驗(yàn)這個(gè)新方法的快捷與簡便,讓學(xué)生的印象更深刻。這個(gè)教學(xué)環(huán)節(jié)在教師的引導(dǎo)下克服困難,解決了力所能及的問題,達(dá)到了新的平衡,開發(fā)了學(xué)生的創(chuàng)新潛能。

  在教學(xué)過程中讓學(xué)生自主探索,雖然用了很多時(shí)間,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生的收獲會(huì)更多。

  三、鞏固內(nèi)化,拓展提高。

  在上述教學(xué)過程中,雖然每個(gè)同學(xué)只操作了一兩次,但是通過學(xué)生之間的合作交流,在教師的引導(dǎo)下,學(xué)生經(jīng)歷了一個(gè)典型的通過不完全 歸納的方法得出規(guī)律的過程。學(xué)生在這一過程中的體驗(yàn),無論是方法層面,還是思想層面均將對后繼的學(xué)習(xí)產(chǎn)生深刻的影響。

  在初步感知3 的倍數(shù)的特征后,我提出了問題:一個(gè)數(shù),在計(jì)數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對嗎?你是否認(rèn)為我們研究出的結(jié)論對所有的數(shù)都適用呢?這兩個(gè)問題的提出,意義在于通過“更大的數(shù)”和“任意找”兩方面,使學(xué)生深切體驗(yàn)了不完全歸納法的這一要義,同時(shí)也培養(yǎng)了學(xué)生縝密思考問題的意識(shí)和習(xí)慣。

【《3的倍數(shù)的特征》教學(xué)反思】相關(guān)文章:

3的倍數(shù)的特征教學(xué)反思09-13

3的倍數(shù)特征教學(xué)反思04-07

《3的倍數(shù)特征》教學(xué)反思04-11

25的倍數(shù)的特征的教學(xué)反思11-23

《3的倍數(shù)的特征》教學(xué)反思(通用15篇)03-21

《2,5的倍數(shù)的特征》的 教學(xué)反思09-23

《2和5的倍數(shù)的特征》教學(xué)反思范文09-22

2、5倍數(shù)的特征教學(xué)反思08-17

《2、5的倍數(shù)的特征》教學(xué)反思(精選15篇)03-21