- 相關(guān)推薦
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思(精選11篇)
作為一位剛到崗的人民教師,我們要有很強的課堂教學(xué)能力,通過教學(xué)反思可以有效提升自己的教學(xué)能力,那要怎么寫好教學(xué)反思呢?以下是小編為大家整理的數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思,歡迎閱讀與收藏。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 1
本節(jié)課內(nèi)容是《分數(shù)乘分數(shù)》,它是建立在學(xué)生理解分數(shù)乘整數(shù)意義的基礎(chǔ)上進行教學(xué)的,重點在于使學(xué)生理解分數(shù)乘分數(shù)的意義及計算方法,這也是本單元的難點。教學(xué)設(shè)計中主要是突出實際操作和圖形語言,使學(xué)生在實際操作中,直觀體會分數(shù)乘分數(shù)的計算方法,并能運用自己的語言進行總結(jié)。
首先在情境中,先讓學(xué)生理解分數(shù)乘整數(shù)的意義及計算方法,然后通過直觀演示,依次折出長方形紙條的二分之一,二分之一的二分之一,并讓學(xué)生用乘法算式來表示這個過程,初步感受分數(shù)乘分數(shù)的意義和計算方法,然后讓學(xué)生猜想,由于學(xué)生已有了分數(shù)乘整數(shù)的基礎(chǔ),所以不難猜出結(jié)果,接著就讓學(xué)生在實際操作中,借助圖形語言,體會分數(shù)乘分數(shù)的意義,感受分數(shù)乘分數(shù)為什么是用“分子乘分子,分母乘分母”的方法,學(xué)生在折紙的過程中,再借助教材中“討論”的問題,鼓勵學(xué)生討論算式與圖形之間的關(guān)系,通過類似幾道題的“折一折、想一想、算一算”,讓學(xué)生運用自己的語言小結(jié)分數(shù)乘分數(shù)的方法。在計算法則的發(fā)現(xiàn)上,因為在前面花費了許多的筆墨,到法則的'形成時,就讓學(xué)生根據(jù)黑板上的五個算式讓學(xué)生觀察“積的分子、分母與兩個因數(shù)的分子、分母有什么關(guān)系?”得出分數(shù)乘分數(shù)的計算方法。
由于本節(jié)課只是初步讓學(xué)生通過折紙活動感受分數(shù)乘分數(shù)的意義及計算方法,整節(jié)課大量的時間都放在了學(xué)生“折一折、涂一涂”的直觀感受上,注重發(fā)揮學(xué)生的積極性和主動性,給于學(xué)生更多的自主學(xué)習(xí)的機會。整個教學(xué)的流程是非常清晰的,由復(fù)習(xí)到新授再到練習(xí)老師都對教材進行了很好的研究,并且非常熟練自己的教學(xué)程序。
反思本課的教學(xué),在計算方法的形成過程時,有點重結(jié)論輕過程之嫌。如果加上讓學(xué)生自己舉例驗證的環(huán)節(jié),可能更體現(xiàn)數(shù)學(xué)思想方法的滲透;另外,平時教學(xué)中,發(fā)現(xiàn)學(xué)生如果在原來的題目上直接約分,學(xué)生往往錯誤率相對高一點,于是一律要求重新抄題再約分,因此在練習(xí)中要求先約分再計算時,學(xué)生基本都是先抄好題目,然后在計算過程中進行約分的,其實這一個環(huán)節(jié)可以放在第二課時中進行,放在這里讓學(xué)生倒有點無所適從的感覺。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 2
本節(jié)課《分數(shù)乘分數(shù)》是人教版六年級數(shù)學(xué)第二單元的內(nèi)容,重點是鞏固和進化理解分數(shù)乘法的意義,探索分數(shù)乘分數(shù)的計算法則。
在教學(xué)實踐中我繼續(xù)采用“數(shù)形結(jié)合”的數(shù)學(xué)方法,幫助學(xué)生達成以上的兩個數(shù)學(xué)目標。對于課堂中的“探究活動”沒有直接放手,這是因為學(xué)生對“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義的理解還不夠深刻,因此在整個得教學(xué)過程分為三個層次:
(1)、引導(dǎo)學(xué)生通過用圖形表示算式,再用算式表示圖形,深化“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義,感知分數(shù)乘分數(shù)的計算過程。
。2)、以3/4×1/4為例,讓學(xué)生先解釋算式的意義,然后用圖形表示這個意義,最后在根據(jù)圖形表示出算式的計算過程,這樣做的目的是通過“以形論數(shù)”和“以數(shù)表形”的過程是學(xué)生鞏固分數(shù)乘法的意義,體會分數(shù)乘分數(shù)的計算過程。
。3)、學(xué)生運用數(shù)形結(jié)合的方法獨立完成教材中的試一試,進一步達成以上目標,并為總結(jié)分數(shù)乘分數(shù)的計算方法積累認知。整體教學(xué)的效果很好。
由于學(xué)生有比較堅實的整數(shù)乘法意義的基礎(chǔ),所以對于探索分數(shù)乘整數(shù)的意義和計算法則的探索完全可以讓學(xué)生獨立進行。而在分數(shù)乘分數(shù)計算過程的探索中,由于學(xué)生剛剛認識“求一個數(shù)的幾分之幾是多少”的`分數(shù)乘法意義,并且用圖形表征分數(shù)乘分數(shù)的計算過程比較復(fù)雜,因此采用“扶一扶,放一放”的策略就比較好。
學(xué)生在計算分數(shù)乘分數(shù)時能根據(jù)計算法則進行計算,但對于計算過程的約分,部分學(xué)生的約分意識不強,如3的倍數(shù),7的倍數(shù),甚至更大質(zhì)數(shù)的倍數(shù),學(xué)生不知道約分,使結(jié)果不是最簡,還要加強訓(xùn)練。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 3
分數(shù)乘分數(shù)的意義是分數(shù)乘整數(shù)意義的擴展,記住分數(shù)乘法的計算法則并不困難,但讓學(xué)生理解算理難度就比較大了。本節(jié)課教學(xué)的重點,難點是鞏固和進一部理解分數(shù)乘法的意義,探索分數(shù)乘分數(shù)的計算法則。教學(xué)中我主要是采用“數(shù)形結(jié)合”的數(shù)學(xué)方法,讓學(xué)生在實際操作中,直觀體會分數(shù)乘分數(shù)的計算方法,并運用自己的語言進行歸納總結(jié)。首先在復(fù)習(xí)中,通過直觀演示,引導(dǎo)學(xué)生依次折出長方形紙條的1/2,再取1/2的1/4和3/4,并讓學(xué)生用乘法算式來表示這個過程,初步感受分數(shù)乘分數(shù)的意義和計算方法,接著以2/3×1/5、2/3×4/5例,讓學(xué)生先解釋算式的意義,然后用圖形表示這個意義,最后在根據(jù)圖形表示出算式的計算過程,這樣做的目的是通過“以形論數(shù)”和“以數(shù)表形”的過程是學(xué)生鞏固分數(shù)乘法的意義,體會分數(shù)乘分數(shù)的計算過程。教學(xué)中我充分借助學(xué)生已有的知識基礎(chǔ),通過觀察、實驗、操作、推理等活動,通過例題的直觀操作,通過知識的遷移幫助學(xué)生理解了分數(shù)乘分數(shù)的意義,初步掌握了分數(shù)乘分數(shù)的計算方法。在探究活動中,能引導(dǎo)學(xué)生主動參與分析、觀察、猜想、驗證、比較、歸納的過程,進一步發(fā)展了學(xué)生初步的演繹推理和合情推理能力。
通過本課教學(xué)我有了以下幾點思考:
以形論數(shù)”和“以數(shù)表形”相結(jié)合。
分數(shù)乘法的意義和計算法則的道理比較抽象,學(xué)生理解起來不是很容易,所以利用圖形使抽象的問題直觀化,在本課教學(xué)中就顯得尤其重要了?v觀教材,數(shù)形結(jié)合思想的滲透也有著不同的層次,例如分數(shù)乘法前兩節(jié)課中是利用具體的實物圖形,幫助學(xué)生從具體問題中抽象出數(shù)學(xué)問題;在分數(shù)乘法第三節(jié)課中是利用直觀的`幾何圖形,幫助學(xué)生理解分數(shù)乘分數(shù)的計算道理;接下來的分數(shù)乘法應(yīng)用中,我們還將利用線段圖幫助學(xué)生理解分數(shù)乘法應(yīng)用的問題。數(shù)形結(jié)合的過程不是簡單的抽象變?yōu)橹庇^的過程,而是抽象變?yōu)橹庇^之后,再從直觀變?yōu)槌橄,也就是要講“以形論數(shù)”和“以數(shù)表形”兩個方面有機的結(jié)合起來,只有完整的使學(xué)生經(jīng)歷數(shù)與形之間的“互動”,才能使他們感知“數(shù)形結(jié)合”,才能使他們能在解決問題時自覺地應(yīng)用“數(shù)形結(jié)合”
經(jīng)歷探究過程,優(yōu)化互動生成。
“新課程標準”指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動與共同發(fā)展的過程!边@一新的理念說明:數(shù)學(xué)教學(xué)活動將是學(xué)生經(jīng)歷一個數(shù)學(xué)化的過程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動。因此,教學(xué)本課時力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過程。即讓學(xué)生在動手操作——探究算法——舉例驗證——交流評價——法則統(tǒng)整等一系列活動中經(jīng)歷“分數(shù)乘分數(shù)”計算法則的形成過程。這里關(guān)注了讓學(xué)生自己去經(jīng)歷、去體驗,去感悟、去創(chuàng)造。學(xué)習(xí)是孩子自己的事,把探究的權(quán)力真正還給學(xué)生后,學(xué)生的表現(xiàn)會讓你大吃一驚。在兩個班的上課中,關(guān)于分數(shù)乘分數(shù)法則都有不同的驗證和說明的方法出現(xiàn),這些方法遠遠超出課前的預(yù)設(shè)。究其原因,就是學(xué)習(xí)變成了自己的事,學(xué)的更主動,潛能發(fā)揮到了極至。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 4
《分數(shù)乘分數(shù)》的教學(xué)重點是鞏固理解分數(shù)乘法的意義,探索分數(shù)乘分數(shù)的計算算理與法則。
在教學(xué)實踐中繼續(xù)采用“數(shù)形結(jié)合”的數(shù)學(xué)方法,幫助學(xué)生達成以上兩個教學(xué)目標。對于今天的“探究活動”沒有直接放手,這是因為學(xué)生對“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義的理解還不夠深刻,因此在整個的教學(xué)過程分為三個層次:
一、引導(dǎo)學(xué)生通過用圖形表示分數(shù)的意義,再用算式表示圖形,深化“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義,感知分數(shù)乘分數(shù)的計算過程。
二、以1/5xx1/4為例,讓學(xué)生先解釋算式的意義,然后用圖形表示這個意義,最后再根據(jù)圖形表示出算式的計算過程,這樣做的目的是通過“以形論數(shù)”和“以數(shù)表形”的過程讓學(xué)生鞏固分數(shù)乘法的意義,體會分數(shù)乘分數(shù)的計算過程。
三、學(xué)生運用數(shù)形結(jié)合的方法獨立完成教材中的“試一試”,進一步達成以上目標,并為總結(jié)分數(shù)乘分數(shù)的計算積累認知。可以說整體教學(xué)的效果還好。
通過今天的課,我對數(shù)形結(jié)合的思想有了更進一步的理解。由于分數(shù)乘法的意義和計算法則的`道理比較抽象,學(xué)生理解起來不是很容易,所以利用圖形使抽象的問題直觀化,在本單元教學(xué)中就顯得特別重要了?v觀教材,樹形結(jié)合思想的滲透也有不同的層次,數(shù)形結(jié)合能幫助學(xué)生從具體問題中抽象出數(shù)學(xué)問題;在本學(xué)期的分數(shù)乘分數(shù)中是利用直觀的幾何圖形,幫助學(xué)生理解分數(shù)乘分數(shù)的計算道理;接下來的分數(shù)乘法應(yīng)用中,我們還將利用線段圖幫助學(xué)生理解分數(shù)乘法應(yīng)用的問題;使用的圖形越來越簡約體現(xiàn)了教材對數(shù)形結(jié)合思想滲透的一個過程。
數(shù)形結(jié)合的過程不是簡單的抽象變?yōu)橹庇^的過程,而是抽象變?yōu)橹庇^之后,在從直觀變?yōu)槌橄蟮囊粋過程,也就是要將“以形論數(shù)”和“以數(shù)表形”兩個方面有機的結(jié)合起來。只有完整的讓學(xué)生經(jīng)歷數(shù)與形之間的“互動”,才能使他們感知“數(shù)形結(jié)合”,才能使他們能在解決問題時自覺地應(yīng)用“數(shù)形結(jié)合”的方法。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 5
不久前,在教學(xué)分數(shù)乘分數(shù)時,有一些反思,現(xiàn)整理如下:
案例一
浙江版教材是這樣安排和處理的:一臺飼料粉碎機,每小時粉碎飼料1/2噸,3/4小時粉碎飼料多少噸?引導(dǎo)學(xué)生想:3/4小時粉碎飼料多少噸,就是求1/2噸的3/4是多少,算式是1/23/4。通過數(shù)形結(jié)合的方法引導(dǎo)學(xué)生觀察和思考:1小時粉碎飼料1/2噸,1/4小時粉碎1/2噸的1/4,就是把1/2噸平均分成4份,取中的1份,也就是把1/2噸平均分成(24)份,取其中的1份。3/4小時粉碎1/2噸的3/4,就是取3個1/ (24),結(jié)果是 ,最后師生歸納分數(shù)乘以分數(shù)的計算法則。
【反思一】
這樣的安排側(cè)重于意義的學(xué)習(xí),但由于例題的安排缺乏一定的問題情境和生活情境,比較枯燥和抽象,很難調(diào)動學(xué)生的求知欲望。因為學(xué)生的學(xué)習(xí)不是簡單地接受知識,而是在體驗和創(chuàng)造中學(xué)習(xí)。我們的數(shù)學(xué)教學(xué)應(yīng)該從學(xué)生的生活經(jīng)驗出發(fā),從學(xué)生已有的數(shù)學(xué)知識結(jié)構(gòu)出發(fā),基于這樣的想法,在實際教學(xué)中,我進行這樣的處理:
案例二
先創(chuàng)設(shè)問題情境地,分數(shù)單位乘以分數(shù)單位。課件出示一個邊長為1米的正方形,面積為1平方米。然后,在正方形一角又出示一個小長方形,請大家估計一下,圖中的陰影部分大約是多少平方米,用分數(shù)表示。(學(xué)生猜測、估計)。課件出示背景格子圖,學(xué)生很容易就看出來整個正方形被平均分成了20份,而這個陰影部分恰好是1/20平方米;這個格子圖把正方形的邊長分別平均分成了4份和5份,即:這個長方形陰影的長和寬分別是1/4米和1/5米。學(xué)生已經(jīng)知道長方形的面積是長乘寬,那么1/51/4和1/20平方米之間有什么聯(lián)系?你有什么想法?指導(dǎo)學(xué)生進行交流
【反思二】
教學(xué)情境是一種特殊的教學(xué)環(huán)境,是教師為了支持學(xué)生的學(xué)習(xí),根據(jù)教學(xué)目標和教學(xué)內(nèi)容有目的地創(chuàng)設(shè)的教學(xué)環(huán)境。建構(gòu)主義學(xué)習(xí)理論認為,學(xué)習(xí)是學(xué)生主動的建構(gòu)活動,學(xué)習(xí)應(yīng)與一定的情境相聯(lián)系,在實際情境下進行學(xué)習(xí),可以使學(xué)生利用原有知識和經(jīng)驗同化當前要學(xué)習(xí)的新知識。這樣獲取的新知識,不但便于保持,而且容易掌握遷移到新的情境中去。創(chuàng)設(shè)教學(xué)情境,不僅可以使學(xué)生容易掌握數(shù)學(xué)知識和技能,而且可以使學(xué)生更好地體驗教學(xué)內(nèi)容中的情感,使原來枯燥的、抽象的數(shù)學(xué)知識變得生動形象、饒有興趣。從現(xiàn)代教學(xué)論的觀點看,數(shù)學(xué)教師的主要任務(wù)就是為學(xué)生設(shè)計學(xué)習(xí)的情境,提供全面、清晰的有關(guān)信息,引導(dǎo)學(xué)生在教師創(chuàng)設(shè)的教學(xué)情境中,自己開動腦筋進行學(xué)習(xí),掌握數(shù)學(xué)知識。
孔企平說,我們在課堂里講的數(shù)學(xué)學(xué)科與數(shù)學(xué)家研究的數(shù)學(xué)是有區(qū)別的。數(shù)學(xué)家研究的數(shù)學(xué)學(xué)科是從概念、公理、定理出發(fā)的以邏輯體系為基礎(chǔ)的數(shù)學(xué),而我們給學(xué)生講的數(shù)學(xué)則更多地建立在學(xué)生經(jīng)驗的'基礎(chǔ)上,是這方面生活經(jīng)驗的升華。所以,這樣的設(shè)計充分考慮到學(xué)生的已有的知識經(jīng)驗,
但這樣的設(shè)計顯然對算理的學(xué)習(xí)不足,學(xué)習(xí)知識的過程中學(xué)生的體驗也是不足的。另外,所有這一切,包括圖形和數(shù)據(jù),都是教師事先準備好的,學(xué)生的所有猜想與活動都是在老師所劃定的圈子里進行,雖然我精心為學(xué)生創(chuàng)設(shè)了一個探索的情境,但是,學(xué)生還是被老師牽著鼻子走。
〖案例三
活動與問題:
1、每人拿出一張長方形紙,折一折,表示出它的1/□,涂上顏色;再把這張紙的1/□看作單位1,表示出它的1/□,也就是1/□的1/□,把折出的1/□涂上然后把這張長方形展開看一看,涂色部分是這張紙的幾分之幾?
2、你能把剛才折紙的操作活動用算式表示出來嗎?
3、猜想與驗證:涂兩種顏色的陰影是整個長方形的幾分之幾?打開折紙并驗證。
4、把學(xué)生的算式和結(jié)果盡可能多的都寫在白板上。
5、小組討論并發(fā)現(xiàn)規(guī)律。
【反思三】
《國家數(shù)學(xué)課程標準》中強調(diào):數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者。 如何把一些抽象的數(shù)學(xué)概念變?yōu)樾W(xué)生看得見、摸得著、理解得了的數(shù)學(xué)事實?這是每個數(shù)學(xué)教師在課堂教學(xué)中必須很好考慮的問題。許多成功的案例說明,讓小學(xué)生動手操作是提高數(shù)學(xué)學(xué)習(xí)的有效策略之一,因為這樣做既符合兒童的生理、心理特征,可以吸引他們把注意力集中到有意識的教學(xué)活動中來;又能使他們在大量的感性材料的基礎(chǔ)上,對材料進行整理,找出有規(guī)律的現(xiàn)象,逐步抽象、概括,獲得數(shù)學(xué)概念和知識,使抽象問題具體化。
基于這樣的認識,在實踐中設(shè)計本課時,有以下三個想法:
1、開放式的教學(xué)設(shè)計。把一張長方形的紙折成1/□,可千萬不要輕視這個小小的□,它給學(xué)生的很大的空間和權(quán)利。我們常說,學(xué)生是學(xué)習(xí)的主人;這個□就是在把學(xué)習(xí)的權(quán)利還給學(xué)生;
2、讓學(xué)生經(jīng)歷猜想與驗證的過程,并在這個過程中學(xué)會研究數(shù)學(xué)問題的方法,有了大膽的猜想才會更有繼續(xù)研究的欲望。
3、在親身活動中感受數(shù)學(xué)。美國華盛頓兒童博物館的墻壁上張貼著一句格言:我聽見了,就忘記了;我看見了,就知道了;而我做了,就理解了。案例三的設(shè)計重視學(xué)生的動手操作,把較復(fù)雜的分數(shù)乘分數(shù)的計算方法,用折紙這一直觀動作進行反映,有利于學(xué)生感受和理解計算方法。
現(xiàn)代教學(xué)論認為,每位學(xué)生都有潛力,教師的作用僅僅是激發(fā)這種潛力。因此,在小學(xué)數(shù)學(xué)課堂教學(xué)中,教師就應(yīng)力求凸顯學(xué)生生命的主體地位,創(chuàng)設(shè)一定的情境,激發(fā)其內(nèi)在的發(fā)展?jié)摿,放手讓學(xué)生參與學(xué)習(xí)活動。讓他們經(jīng)歷知識的發(fā)現(xiàn)、問題的思考、規(guī)律的尋找、結(jié)論的概括、疑難的質(zhì)問乃至知識結(jié)構(gòu)的建構(gòu)等一系列的數(shù)學(xué)活動過程,使短短的一節(jié)課,時時充滿生命活力。這是學(xué)生課堂生命活動得以充分展現(xiàn)的關(guān)鍵。作為教師,在設(shè)計教學(xué)活動時,要盡可能給他們提供動手操作的機會。但數(shù)學(xué)課的操作畢竟是學(xué)習(xí)意義上的操作,是一種特殊的動手活動,在組織操作活動時必須注意以下幾點:一是要有明確的操作目的,切忌為了操作而操作,使活動本身流于形式。二是要給學(xué)生留有足夠的思維空間。學(xué)具操作要注意適時、適量和適度。適時就是要注意最佳時機,當學(xué)生想知而不知,似懂而非懂時,用學(xué)具擺一擺,就會起到化難為易的效果。適量是指要控制使用的次數(shù),活動的時間,并不是搞得越多越好。適度是指當學(xué)生的感性認識已積累到一定程度時,就應(yīng)引導(dǎo)學(xué)生在豐富的表象的基礎(chǔ)上及時抽象概括,掌握火候,使感性認識逐步上升為理性認識。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 6
今天教學(xué)了分數(shù)乘分數(shù)(例4和例5),在課前研究教材時就覺得不太好理解,因為例題中都有兩個單位1, 比如畫斜線的1份占1/2的1/4,此時的單位1是1/2,但是對于整個長方形來說是1/8,此時的單位1是一個長方形。
后面的1/2的3/4,以及對例5的兩個算式的理解都是同出一轍。但要注意兩者教學(xué)時的區(qū)別:例4是讓學(xué)生從圖中猜想(感知)出兩個分數(shù)乘分數(shù)的結(jié)果。例5是讓學(xué)生先猜算結(jié)果,再用圖來驗證。二者在教學(xué)中的順序是相反的,但其目的都是讓學(xué)生從圖形直觀感知進而理會出分數(shù)乘分數(shù)的計算方法。
但是從學(xué)生的反饋來看,好像不能夠充分理解,確實是太抽象了,雖然有圖的輔助。分開來看都能理解斜線部分是1/2的1/4,又是這張紙的1/8。但是為什么1/2的1/4就是1/8呢?這其間可是隱含著兩個不同的單位1啊。學(xué)生能轉(zhuǎn)得過來嗎?單靠猜想感知行嗎?教學(xué)時我是照書按步就班的教的,但有不少學(xué)生好像鉆到云霧里去了。
為什么呢?怎么辦呢?
原因很簡單太抽象了。
辦法是有的`化抽象為形象:我們來看看練習(xí)九的第1題,與例題的最大的區(qū)別在于例題是在數(shù)之間思考,練習(xí)中的第1題是在數(shù)量之間的思考。不要小瞧這一點變化,借助數(shù)量來理解就比例題數(shù)之間的理解要容易得多。
本課的教學(xué)目的是教學(xué)分數(shù)乘分數(shù)的計算方法,前面的幾個例題都是借助具體的數(shù)量讓學(xué)生理解算理的,而分數(shù)乘分數(shù)比前面的幾個例題都復(fù)雜些,但是卻擺脫數(shù)量而抽象成數(shù),學(xué)生的思維難度陡增。為什么不借助數(shù)量呢?如果把例題轉(zhuǎn)換成像練習(xí)九第1題這樣的情境,學(xué)生會很容易列式,也比較容易理解算理。在此基礎(chǔ)之上,再抽象成數(shù),如例題式樣的,學(xué)生學(xué)起來會好得多。]
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 7
分數(shù)乘分數(shù)的意義是分數(shù)乘整數(shù)意義的擴展,記住分數(shù)乘法的計算法則并不困難,但讓學(xué)生理解算理難度就比較大了。所以這部分內(nèi)容是本節(jié)課教學(xué)的重點,也是難點。教學(xué)中我主要是突出了實際操作和圖形語言,使學(xué)生在實際操作中,直觀體會分數(shù)乘分數(shù)的計算并能運用自己的語言進行總結(jié)。
首先在復(fù)習(xí)中,我先讓學(xué)生理解分數(shù)乘整數(shù)的意義及計算方法,然后通過直觀演示,依次折出長方形紙條的1/2,再取1/2的1/4和3/4,并讓學(xué)生用乘法算式來表示這個過程,初步感受分數(shù)乘分數(shù)的意義和計算方法,并用語言概括,初步滲透了無限的思想;然后讓學(xué)生猜想1/2×1/4=?由于學(xué)生已有了分數(shù)乘整數(shù)的基礎(chǔ),所以不難猜出:1/2×1/4=1/8,接著就讓學(xué)生在實際操作中,借助圖形語言,體會分數(shù)乘分數(shù)的`意義,感受分數(shù)乘分數(shù)為什么是用“分子乘分子,分母乘分母”的方法,學(xué)生在折紙的過程中,體驗到結(jié)果都相同,再借助教材中“討論”的問題,鼓勵學(xué)生討論算式與圖形之間的關(guān)系,通過類似幾道題的“折一折、想一想、算一算”,讓學(xué)生運用自己的語言小結(jié)分數(shù)乘分數(shù)的方法。
教學(xué)中充分借助學(xué)生已有的知識基礎(chǔ),通過觀察、實驗、操作、推理等活動,通過例題的直觀操作,通過知識的遷移幫助學(xué)生理解了分數(shù)乘分數(shù)的意義,初步掌握了分數(shù)乘分數(shù)的計算方法。在探究活動中,讓學(xué)生主動進行分析、觀察、猜想驗證、比較、歸納的過程,進一步發(fā)展學(xué)生初步的演繹推理和合情。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 8
[片段一]
師: 1/41/2你們能不能利用以前學(xué)過的知識計算出它的答案呢?
生:能。
師:請同學(xué)們聽清要求,先獨立思考,再與你的同桌交流你是怎么想的?
生:(嘗試計算答案,探究算理)
師:(巡視,指導(dǎo))
師:許多組想出了很多辦法,我們一起來交流一下。說說你們是怎么想的?(據(jù)學(xué)生匯報:化小數(shù)板書;折紙請他生再演示;匯報算式先放一放,最后請學(xué)生說說理由)
組1: 1/4=0.25,1/2=0.5,所以0.250.5=0.125=1/8,我們認為答案是1/8。
組2:可以把一張紙平均分成4份,再把其中的一份再平均分成2份取其中的一份,這樣一共把這張紙平均分成了8份,取了其中的一份,所以是1/8。
。◣煟哼@種方法你聽懂了嗎?這個8是怎么來的?
組3:按他的想法來說,是折出來的,先平均分成4份,再把其中的一份再平均分成2份,實際上是把這長方形分成了8份。)
組4:(邊說邊畫):我們用的是線段的方法,畫一條線段作為單位1,把它平均分成4份,取其中一份,再把這一份平均分成2份取一份,就是把這條線段平均分成了8份,取了其中的一份。
師:以1/41/2=11/42=1/8為例,你為什么能用42呢?(課件呈現(xiàn))
[片段二]
師:像1/41/2,大家想出了很多辦法,如果工作1/3小時可以鋪設(shè)這塊地面的幾分之幾?3/4小時呢?現(xiàn)在你能不能解決了?誰來匯報算式?(課件呈現(xiàn))。
師:聽清要求,我們分工一下,1、2組研究第一個算式,3、4組研究第二個算式,用你喜歡的方法獨立思考一下。
生:選擇探究算理及其結(jié)果。
師:巡視,指導(dǎo)。
師:許多組想出了很多辦法,我們一起來交流一下。我們先請選擇第一個問題的同學(xué)匯報:說說你們是怎么想的?
生:匯報。
師:這題你們?yōu)槭裁礇]有化小數(shù)去解決。
生:不能化有限小數(shù)。
師:所以化小數(shù)去解決是不是對所有的分數(shù)乘分數(shù)都適用呢?(生:不能)所以化小數(shù)去解決分數(shù)乘分數(shù)有一定的局限性。
師:我們再請解決第二個問題的同學(xué)匯報:說說你們是怎么想的?
[片段三]
師:從剛才的推算中,我們已經(jīng)得出了1/41/2=1/8、1/41/3=1/12、1/43/4=3/16,是不是我們以后遇到這樣的題目都需要這樣推算呢?(生:不是)
師:那請你們仔細觀察一下,分數(shù)乘分數(shù)我們應(yīng)該怎樣計算呢?
同桌討論,匯報:
。ò鍟┓謹(shù)乘分數(shù),用分子相乘的積做積的分子,分母相乘的積做積的分母。
[反思]
1.猜想驗證歸納的探究思路是否需要?
在本節(jié)課的試教中,我采用了猜想驗證歸納的探究思路來進行教學(xué)。在課堂中,我發(fā)現(xiàn)學(xué)生猜測1/41/2,他們猜測的結(jié)果都是1/8。在驗證環(huán)節(jié)學(xué)生純粹停留在如何得出算式結(jié)果上,導(dǎo)致學(xué)生的思路大大受到限制。而在第二次教學(xué)時。我采用了計算匯報方法歸納的思路進行教學(xué)。我發(fā)現(xiàn)學(xué)生在課堂中更為積極主動,學(xué)生在匯報方法時也體現(xiàn)了層次性。學(xué)生群體一:單純從如何得出答案入手,但正所謂知其然而不知其所以然;學(xué)生群體二:能初步從自己的探究中知道應(yīng)該怎樣算。
綜上所述,猜想驗證歸納的探究思路的'確在數(shù)學(xué)教學(xué)中起了相當大的作用,但對于部分內(nèi)容的探究還是不適合的。
2.教師該如何從學(xué)生的發(fā)言中抓準本質(zhì)?
課堂活躍了,學(xué)生發(fā)言就大膽了,自然而然課堂上各種不可預(yù)設(shè)的回答就出現(xiàn)了。作為教師要善于調(diào)控課堂節(jié)奏、善于引導(dǎo)(歸納)學(xué)生發(fā)言,這樣才不至于讓有價值的問題流失,不至于讓課堂上學(xué)生的回答變的無人理睬。
如:我在試教中,學(xué)生匯報了1/41/2=(14)(12)=18=1/8,我一開始并沒有理解這位同學(xué)的這樣做的理由。我馬上問:有誰明白這樣做的理由嗎?為自己盡量爭取盡可能多的時間。當然,即使我明白這樣做的理由,也應(yīng)讓學(xué)生多思考、多說說,這樣才能有效的培養(yǎng)學(xué)生的參與度。
綜上所述,我覺得善于從學(xué)生的發(fā)言中抓準本質(zhì)不是一朝一夕就能形成,它必須從自身漫長的經(jīng)歷中去體驗、感悟才能變得收放自如。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 9
“教必有法而教無定法”,只有方法得當,才會有效。本課的教學(xué),我采用了自主學(xué)習(xí)教學(xué)法、合作探究法、討論交流法以及練習(xí)法的組織學(xué)生參與學(xué)習(xí)。學(xué)生在老師的指導(dǎo)下,通過獨立思考、合作交流,利用已有的知識基礎(chǔ)和生活經(jīng)驗開展探究性的學(xué)習(xí),在學(xué)習(xí)中形成了多樣性的解題思路。
教學(xué)中,我放手讓學(xué)生聯(lián)系已有知識經(jīng)驗,用自己思維方式進行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識,充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。學(xué)生通過討論、合作交流,得出三種不同的處理方法:小數(shù)化成分數(shù),分數(shù)化成小數(shù),小數(shù)和分母約分。再通過形式多樣、不同層次的練習(xí),使程度不一的學(xué)生在鞏固新知中發(fā)展能力,充分感受學(xué)習(xí)的快樂?傊,本節(jié)課我力求讓學(xué)生在探究學(xué)習(xí)中掌握小數(shù)乘分數(shù)的計算方法,培養(yǎng)學(xué)生多樣性的數(shù)學(xué)思想,不斷提高學(xué)生的'計算能力。
但在教學(xué)中,也存在不足之處:一是學(xué)生在板演匯報各種算法時,教師未能引導(dǎo)學(xué)生說說小數(shù)和分數(shù)間的互化方法,未能及時關(guān)注一些學(xué)有困難的學(xué)生;二是課堂時間把握不好。學(xué)生板演的次數(shù)多了些,浪費了些課堂時間,使最后一個變式練習(xí)未進行就小結(jié)了。
通過本節(jié)課的教學(xué),我也得到了一些教學(xué)中的啟示:一是課前要注重及時喚起學(xué)生對新授課內(nèi)容相聯(lián)系的相關(guān)知識,安排對相關(guān)知識提前鞏固練習(xí),課堂才能達到熟練應(yīng)用;二是要不能忽視備學(xué)生,特別是一些學(xué)有困難的學(xué)生。對于不同的學(xué)生要進行因材施教,新知識的學(xué)習(xí)過程每位學(xué)生可以同步進行,但對已學(xué)知識的掌握情況學(xué)生的差異還是很大的,因此這也是每位老師應(yīng)下功夫思考的教學(xué)環(huán)節(jié);三是教學(xué)中要不斷的思考和學(xué)習(xí),才會有不斷的改進,在教學(xué)與反思中讓自己進步是我在今后教學(xué)中的奮斗目標。
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 10
《分數(shù)乘分數(shù)》對于學(xué)生而言是新的內(nèi)容,它的計算方法與整數(shù)、小數(shù)的計算方法有很大區(qū)別,記住分數(shù)乘法的計算法則并不困難,但讓學(xué)生理解分數(shù)乘法的算理,尤其是分數(shù)乘分數(shù)的算理,是本節(jié)課教學(xué)的難點。
《標準》指出,有效的學(xué)習(xí)活動不能單純地依賴模仿與記憶。教學(xué)中要改變以往以例題、示范、講解為主的教學(xué)方式,改變以記憶法則,機械訓(xùn)練為主的學(xué)習(xí)方式,引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動之中。
學(xué)習(xí)這節(jié)課前,我先讓學(xué)生自學(xué),讓他們試著去解決課本上的幾個問題:
課上讓學(xué)生交流探索的結(jié)果。我發(fā)現(xiàn)大部分學(xué)生能在前一問的基礎(chǔ)上可以類推出分數(shù)乘分數(shù)的方法。
有的學(xué)生采用了折紙的方法,一步步的'給大家講解,效果也不錯。
學(xué)生講解的頭頭是道,說實話,這節(jié)課給了我很大的震撼,千萬
不要低估學(xué)生的能力,該放手時一定要放手讓學(xué)生去做,很多時候他們會給你意想不到的驚喜!
整節(jié)課的大部分時間都是安排學(xué)生的探究、討論活動,讓學(xué)生在討論研究中提出猜想,最后在舉例中檢驗猜想后達成共識,得到分數(shù)乘分數(shù)的計算法則,理解算理,由于學(xué)生的探究花了大量時間,最后只是對法則進行了總結(jié),從時間的分配上來說,后面的鞏固練習(xí)時間很少,學(xué)生對分數(shù)乘分數(shù)到底掌握到什么情況心中沒數(shù)。這讓我想到,我們在課堂上無論事先設(shè)計的多么完善,都要根據(jù)學(xué)生的實際情況,跟著學(xué)生的思路走,而不能死套教案,一定要靈活處理。
遺憾的地方:能講解的學(xué)生畢竟是少數(shù),大部分的孩子是聽會的,個別學(xué)生對算理仍然不能很好的理解,對后續(xù)學(xué)習(xí)會有一定影響,對這部分學(xué)生要多幫助、多鼓勵,樹立他們的信心!
數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思 11
本節(jié)課的重點是理解一個數(shù)乘分數(shù)的意義,掌握一個數(shù)乘分數(shù)的計算法則,同樣也是難點。我在教學(xué)中嘗試著讓學(xué)生通過折一折、畫一畫,以直觀的方法讓學(xué)生在理解分數(shù)乘分數(shù)的意義的過程中直接發(fā)現(xiàn)結(jié)果,然后根據(jù)折出來的結(jié)果探索計算法則,放棄了教材中兩次折、畫的方法。剛上完課,表面上感覺按部就班地完成了教學(xué)任務(wù),可是總感覺缺少點什么,教學(xué)過程有點脫節(jié)。
敢于沖擊教材。
改變了情景中的主人公,把教材中的粉墻改成了一位老師家的墻,開門見山,直奔主題。這樣更能激起學(xué)生質(zhì)疑的興趣。
關(guān)注動態(tài)生成。
在課的開始,我激活了教學(xué)內(nèi)容,讓學(xué)生在課的開始就面對“老師家粉刷墻壁”的信息,讓學(xué)生提出問題,產(chǎn)生疑問,引起學(xué)生的認知沖突,產(chǎn)生解決問題的.欲望,激發(fā)了學(xué)生解決問題的沖動。在學(xué)生形成的關(guān)于問題的多種原始想法中,我關(guān)注了動態(tài)的生成,抓住鮮活的生成資源,篩選出了關(guān)鍵的問題,使本節(jié)課的目標及教學(xué)重點成為學(xué)生的探討焦點,體現(xiàn)了教與學(xué)的主體地位。
敢于放手研討。
為了突破本節(jié)課的教學(xué)難點,在課堂上我讓學(xué)生折一折、畫一畫,以折紙涂色活動為主線,給學(xué)生提供了大量的動手操作的時間和觀察交流,思考的空間,鼓勵學(xué)生獨立思考,從不同的角度去探究問題。折紙是為了理解意義。當學(xué)生由1/2×2的意義推測出1/4×1/2的意義是表示求1/4的1/2是多少時,我知道學(xué)生并不理解為什么這樣說。正是通過折紙,學(xué)生理解了1/4的意義,1/2的意義,才能理解1/4×1/2的意義。因為學(xué)生只有理解了分數(shù)的意義,才能理解分數(shù)乘分數(shù)的意義。
【數(shù)學(xué)分數(shù)乘分數(shù)教學(xué)反思】相關(guān)文章:
《分數(shù)乘分數(shù)》教學(xué)反思04-03
分數(shù)乘分數(shù)教學(xué)反思通用10-18
《分數(shù)乘分數(shù)》教學(xué)反思范文10-06
《小數(shù)乘分數(shù)》教學(xué)反思09-06