午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

勾股定理的優(yōu)秀教案

時間:2023-12-25 12:50:22 教案 我要投稿
  • 相關(guān)推薦

勾股定理的優(yōu)秀教案

  作為一位兢兢業(yè)業(yè)的人民教師,時常要開展教案準備工作,教案是教學活動的總的組織綱領(lǐng)和行動方案。那么你有了解過教案嗎?下面是小編收集整理的勾股定理的優(yōu)秀教案,希望能夠幫助到大家。

勾股定理的優(yōu)秀教案

勾股定理的優(yōu)秀教案1

  教學課題:勾股定理的應用

  教學時間(日期、課時):

  教材分析:

  學情分析:

  教 學目標:

  能運用勾股定理及直角三角形的判定條件解決實際問題.

  在運用勾股定理解決實際問題的過程中,感受數(shù)學的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學的應用價值.

  教學準備

  《數(shù)學學與練》

  集體備課意見和主要參考資料

  頁邊批注

  教學過 程

  一. 新課導入

  本課時的教學內(nèi)容是勾股定理在實際中的應用。除課本提供的情境外,教學中可以根據(jù)實際情況另行設計一些具體情境,也利用課本提供的素材組織數(shù)學活動。比如,把課本例2改編為開放式的問題情境:

  一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m.如果梯子的頂端下滑0.5m,你認為梯子的底端會發(fā)生什么變化?與同學交流 .

  創(chuàng)設學生身邊的問題情境,為每一個學生提供探索的空間,有利于發(fā)揮學生的主體性;這樣的問題學生常常會從自己的生活經(jīng)驗出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學中學生可能的結(jié)論有:底端也滑動 0.5m;如果梯子的頂端滑到地面 上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端 下滑0.5m,它的底端的滑動小于0.5m;構(gòu)造直角三角形,運用勾股定理計算梯子滑動前、后底端到墻的垂直距離的差,得出梯子底端滑動約0.61m的結(jié)論等);通過與同學交流,完善各自的.想法,有利于學生主動地把實際問題轉(zhuǎn)化為數(shù)學問題 ,從中感受用數(shù)學的眼光審視客觀世界的樂趣 .

  二. 新課講授

  問題一 在上面的情境中,如果梯子的頂端下滑 1m,那么梯子的底端滑動多少米?

  組織學生嘗試用勾股定理解決問題,對有困難的學生教師給予及時的幫助和指導.

  問題二 從上面所獲得的信息中,你對梯子下滑的變化過程有進一步的思考嗎?與同學交流.

  設計問題二促使學生能主動積 極地從數(shù)學的角度思考實際問題.教學中學生可能會有多種思考.比如,①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;②因為梯子頂端 下滑到地面時,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;③由勾股數(shù)可知,當梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。教學中不要把尋找規(guī)律作為這個探索活動的目標,應讓學生進行充分的交流,使學生逐步學會運用數(shù)學的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗和方法.

  3.例題教學

  課本的例1是勾股定理的簡單應用,教學中可根據(jù)教學的實際情況補充一些實際應用問題,把課本習題2.7第4題作為補充例題.通過這個問題的討論,把“32+b2=c2”看作一個方程,設折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學生感受數(shù)學的“轉(zhuǎn)化”思想,進一步了解勾股定理的悠久歷史和我國古代人民的聰明才智.

  三. 鞏固練習

  1.甲、乙兩人同時從同一地點出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km.

  2.如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程( 取3)是( ).

  (A)20cm (B)10cm (C)14cm (D)無法確定

  3.如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求這塊草坪的面積.

  四. 小結(jié)

  我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角 三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊.從應用勾股定理解決實際問題中,我們進一步認識到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個方程,只要 依據(jù)問題的條件把它轉(zhuǎn)化為我們會解的方程,就把解實際問題轉(zhuǎn)化為解方程.

勾股定理的優(yōu)秀教案2

  教學目標

  知識與技能:

  了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題

  過程與方法:

  在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學思想。

  情感態(tài)度價值觀:

  通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。

  教學過程

  1、創(chuàng)設情境

  問題1國際數(shù)學家大會是最高水平的全球性數(shù)學學科學術(shù)會議,被譽為數(shù)學界的“奧運會”。2002年在北京召開了第24屆國際數(shù)學家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學習過的基本圖形組成?這個圖案有什么特別的含義?

  師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的`全等關(guān)系,指出通過今天的學習,就能理解會徽圖案的含義。

  設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設置懸念,引入課題。

  2、探究勾股定理

  觀看洋蔥數(shù)學中關(guān)于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界

  問題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應了直角三角形三邊的某種數(shù)量關(guān)系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?

  師生活動:學生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學生的討論

  追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?

  師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

  設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結(jié)論

  問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。

  師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積

【勾股定理的優(yōu)秀教案】相關(guān)文章:

初二教案勾股定理11-11

勾股定理的逆定理數(shù)學教案02-10

初中數(shù)學《勾股定理的逆定理》教案11-05

《勾股定理》聽課心得07-20

八年級數(shù)學勾股定理教案02-22

八年級數(shù)學勾股定理教案7篇02-22

八年級數(shù)學勾股定理教案(通用12篇)10-12

八年級數(shù)學《勾股定理》教案(通用10篇)08-14

八年級數(shù)學勾股定理教案集錦7篇02-22