午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

二次根式教案

時間:2023-04-06 15:28:58 教案 我要投稿

【實用】二次根式教案4篇

  作為一名為他人授業(yè)解惑的教育工作者,有必要進行細致的教案準備工作,教案是保證教學取得成功、提高教學質(zhì)量的基本條件。那么什么樣的教案才是好的呢?下面是小編收集整理的二次根式教案4篇,僅供參考,希望能夠幫助到大家。

【實用】二次根式教案4篇

二次根式教案 篇1

  一、教學目標

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學美.

  二、教學重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學方法

  啟發(fā)式、講練結(jié)合.

  四、教學過程

  (一)復(fù)習提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的意義,并計算:

  通過練習使學生進一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個式子的特點,引導學生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學們討論論應(yīng)注意的`問題,引導學生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學生分析、回答.

  例1 當a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

  例3 當字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導學生做出本節(jié)課學習內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術(shù)平方根的表達式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習和作業(yè)

  練習:

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習題11.1;A組1;B組1.

  六、板書設(shè)計

二次根式教案 篇2

  一、內(nèi)容解析

  本節(jié)教材是在學生學習二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

  對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).

  二、目標和目標解析

  1.教學目標

  (1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

 。2)會運用二次根式的性質(zhì)進行二次根式的化簡;

 。3)了解代數(shù)式的概念.

  2.目標解析

 。1)學生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

 。2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

 。3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

  三、教學問題診斷分析

  二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的.能力.

  本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.

  四、教學過程設(shè)計

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設(shè)計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.

  例2 計算

 。1)

  (2)

  師生活動:學生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設(shè)計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.

  例3 計算

 。1)

  (2)

  師生活動:學生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?

  師生活動:學生概括式子的共同特征,得得出代數(shù)式的概念.

  【設(shè)計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.

  4.綜合運用

  (1)算一算:

  【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

 。2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

  【設(shè)計意圖】通過此問題的設(shè)計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

 。3)談一談你對 與 的認識.

  【設(shè)計意圖】加深學生對二次根式性質(zhì)的理解.

  5.總結(jié)反思

  (1)你知道了二次根式的哪些性質(zhì)?

 。2)運用二次根式性質(zhì)進行化簡需要注意什么?

 。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

 。4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

  6.布置作業(yè):教科書習題16.1第2,4題.

二次根式教案 篇3

  活動1、提出問題

  一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?

  問題:10+20是什么運算?

  活動2、探究活動

  下列3個小題怎樣計算?

  問題:1)-還能繼續(xù)往下合并嗎?

  2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。

  活動3

  練習1指出下列每組的二次根式中,哪些是可以合并的`二次根式?(字母均為正數(shù))

  創(chuàng)設(shè)問題情景,引起學生思考。

  學生回答:這個運動場要準備(10+20)平方米的草皮。

  教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。

  我們可以利用已學知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

  教師引導驗證:

 、僭O(shè)=,類比合并同類項或面積法;

 、趯W生思考,得出先化簡,再合并的解題思路

  ③先化簡,再合并

  學生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

  教師巡視、指導,學生完成、交流,師生評價。

  提醒學生注意先化簡成最簡二次根式后再判斷。

二次根式教案 篇4

  教學目的

  1.使學生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學重點

  最簡二次根式的定義。

  教學難點

  一個二次根式化成最簡二次根式的方法。

  教學過程

  一、復(fù)習引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導學生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學生回答:

  二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的`因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習:

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結(jié)

  本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

【二次根式教案】相關(guān)文章:

二次根式教案02-15

二次根式教案15篇02-27

數(shù)學二次根式教案02-15

二次根式09-29

二次根式教案模板五篇04-05

【推薦】二次根式教案三篇04-05

二次根式教案匯編5篇04-10

數(shù)學教案-二次根式的除法09-29

數(shù)學教案-二次根式的化簡09-29