- 因式分解教案設(shè)計(jì) 推薦度:
- 整式乘法與因式分解評(píng)研課教案 推薦度:
- 相關(guān)推薦
因式分解教案集合5篇
作為一名教職工,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么寫教案需要注意哪些問(wèn)題呢?下面是小編精心整理的因式分解教案5篇,希望能夠幫助到大家。
因式分解教案 篇1
學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運(yùn)算性質(zhì)的過(guò)程,能用代數(shù)式和文字正確地表述,并會(huì)熟練地進(jìn)行計(jì)算。通過(guò)由特殊到一般的猜想與說(shuō)理、驗(yàn)證,發(fā)展推理能力和有條理的'表達(dá)能力.
學(xué)習(xí)重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.
學(xué)習(xí)過(guò)程:
一、創(chuàng)設(shè)情境引入新課
復(fù)習(xí)乘方an的意義:an表示個(gè)相乘,即an=.
乘方的結(jié)果叫a叫做,n是
問(wèn)題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?
列式為,你能利用乘方的意義進(jìn)行計(jì)算嗎?
二、探究新知:
探一探:
1根據(jù)乘方的意義填空
(1)23×24=(2×2×2)×(2×2×2×2)=2();
(2)55×54=_________=5();
(3)(-3)3×(-3)2=_________________=(-3)();
(4)a6a7=________________=a().
(5)5m5n
猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?
說(shuō)一說(shuō):你能用語(yǔ)言敘述同底數(shù)冪的乘法法則嗎?
同理可得:amanap=(m、n、p都是正整數(shù))
三、范例學(xué)習(xí):
【例1】計(jì)算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.計(jì)算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、學(xué)以致用:
1.計(jì)算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
、-4444=⑸22n22n+1=⑹y5y2y4y=
2.判斷題:判斷下列計(jì)算是否正確?并說(shuō)明理由
⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();
、萢a7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
3.計(jì)算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答題:
(1)已知xm+nxm-n=x9,求m的值.
(2)據(jù)不完全統(tǒng)計(jì),每個(gè)人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個(gè)水分子,那么,每個(gè)人每年要用去多少個(gè)水分子?
因式分解教案 篇2
教學(xué)目標(biāo)
教學(xué)知識(shí)點(diǎn)
使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過(guò)程中的相反關(guān)系。
潛力訓(xùn)練要求。
透過(guò)觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語(yǔ)言概括潛力。
情感與價(jià)值觀要求。
透過(guò)觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。
教學(xué)重點(diǎn)
1、理解因式分解的好處。
2、識(shí)別分解因式與整式乘法的'關(guān)系。
教學(xué)難點(diǎn)透過(guò)觀察,歸納分解因式與整式乘法的關(guān)系。
教學(xué)方法觀察討論法
教學(xué)過(guò)程
Ⅰ、創(chuàng)設(shè)問(wèn)題情境,引入新課
導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、講授新課
1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。
993-99=99×98×100
2、議一議
你能嘗試把a(bǔ)3-a化成n個(gè)整式的乘積的形式嗎?與同伴交流。
3、做一做
。1)計(jì)算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
、3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
。2)根據(jù)上面的算式填空:
、3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
、躽2-6y+9=()2。⑤a3-a=()()。
定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的變形是什么運(yùn)算?由a3-a得到a(a+1)(a-1)的變形與這種運(yùn)算有什么不同?你還能舉一些類似的例子加以說(shuō)明嗎?
下面我們一齊來(lái)總結(jié)一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法與分解因式的聯(lián)系和區(qū)別
ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。
6。例題下列各式從左到右的變形,哪些是因式分解?
。1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
。3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、課堂練習(xí)
P40隨堂練習(xí)
Ⅳ、課時(shí)小結(jié)
本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。
因式分解教案 篇3
第1課時(shí)
1.使學(xué)生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.
2.讓學(xué)生會(huì)確定多項(xiàng)式中各項(xiàng)的公因式,會(huì)用提公因式法進(jìn)行因式分解.
自主探索,合作交流.
1.通過(guò)與因數(shù)分解的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點(diǎn),體驗(yàn)數(shù)學(xué)的類比思想.
2.通過(guò)對(duì)因式分解的教學(xué),培養(yǎng)學(xué)生“換元”的意識(shí).
【重點(diǎn)】 因式分解的概念及提公因式法的應(yīng)用.
【難點(diǎn)】 正確找出多項(xiàng)式中各項(xiàng)的公因式.
【教師準(zhǔn)備】 多媒體.
【學(xué)生準(zhǔn)備】 復(fù)習(xí)有關(guān)乘法分配律的知識(shí).
導(dǎo)入一:
【問(wèn)題】 一塊場(chǎng)地由三個(gè)長(zhǎng)方形組成,這些長(zhǎng)方形的長(zhǎng)分別為,,,寬都是,求這塊場(chǎng)地的面積.
解法1:這塊場(chǎng)地的面積=×+×+×=++==2.
解法2:這塊場(chǎng)地的面積=×+×+×=×=×4=2.
從上面的解答過(guò)程看,解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡(jiǎn)單一些.這個(gè)事實(shí)說(shuō)明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是將多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.
[設(shè)計(jì)意圖] 讓學(xué)生通過(guò)利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過(guò)渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).
導(dǎo)入二:
【問(wèn)題】 計(jì)算×15-×9+×2采用什么方法?依據(jù)是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡(jiǎn)單一些.這個(gè)事實(shí)說(shuō)明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是把多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.
[設(shè)計(jì)意圖] 讓學(xué)生通過(guò)利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過(guò)渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).
一、提公因式法分解因式的概念
思路一
[過(guò)渡語(yǔ)] 上一節(jié)我們學(xué)習(xí)了什么是因式分解,那么怎樣進(jìn)行因式分解呢?我們來(lái)看下面的問(wèn)題.
如果一塊場(chǎng)地由三個(gè)長(zhǎng)方形組成,這三個(gè)長(zhǎng)方形的長(zhǎng)分別為a,b,c,寬都是,那么這塊場(chǎng)地的面積為a+b+c或(a+b+c),可以用等號(hào)來(lái)連接,即:a+b+c=(a+b+c).
大家注意觀察這個(gè)等式,等式左邊的每一項(xiàng)有什么特點(diǎn)?各項(xiàng)之間有什么聯(lián)系?等式右邊的項(xiàng)有什么特點(diǎn)?
分析:等式左邊的每一項(xiàng)都含有因式,等式右邊是與多項(xiàng)式a+b+c的乘積,從左邊到右邊的過(guò)程是因式分解.
由于是左邊多項(xiàng)式a+b+c中的各項(xiàng)a,b,c都含有的一個(gè)相同因式,因此叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.
由上式可知,把多項(xiàng)式a+b+c寫成與多項(xiàng)式a+b+c的乘積的形式,相當(dāng)于把公因式從各項(xiàng)中提出來(lái),作為多項(xiàng)式a+b+c的一個(gè)因式,把從多項(xiàng)式a+b+c的各項(xiàng)中提出后形成的多項(xiàng)式a+b+c,作為多項(xiàng)式a+b+c的另一個(gè)因式.
總結(jié):如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.
[設(shè)計(jì)意圖] 通過(guò)實(shí)例的教學(xué),使學(xué)生明白什么是公因式和用提公因式法分解因式.
思路二
[過(guò)渡語(yǔ)] 同學(xué)們,我們來(lái)看下面的問(wèn)題,看看同學(xué)們誰(shuí)先做出來(lái).
多項(xiàng)式 ab+ac中,各項(xiàng)都含有相同的因式嗎?多項(xiàng)式 3x2+x呢?多項(xiàng)式b2+nb-b呢?
結(jié)論:多項(xiàng)式中各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.
多項(xiàng)式2x2+6x3中各項(xiàng)的公因式是什么?你能嘗試將多項(xiàng)式2x2+6x3因式分解嗎?
結(jié)論:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的`形式,這種因式分解的方法叫做提公因式法.
[設(shè)計(jì)意圖] 從讓學(xué)生找出幾個(gè)簡(jiǎn)單多項(xiàng)式的公因式,再到讓學(xué)生嘗試將多項(xiàng)式分解因式,使學(xué)生理解公因式以及提公因式法分解因式的概念.
二、例題講解
[過(guò)渡語(yǔ)] 剛剛我們學(xué)習(xí)了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進(jìn)行因式分解吧.
(教材例1)把下列各式因式分解:
(1)3x+x3;
(2)7x3-21x2;
(3)8a3b2-12ab3c+ab;
(4)-24x3+12x2-28x.
〔解析〕 首先要找出各項(xiàng)的公因式,然后再提取出來(lái).要避免提取公因式后,各項(xiàng)中還有公因式,即“沒(méi)提徹底”的現(xiàn)象.
解:(1)3x+x3=x3+xx2=x(3+x2).
(2)7x3-21x2=7x2x-7x23=7x2(x-3).
(3)8a3b2-12ab3c+ab
=ab8a2b-ab12b2c+ab1
=ab(8a2b-12b2c+1).
(4)-24x3+12x2-28x
=-(24x3-12x2+28x)
=-(4x6x2-4x3x+4x7)
=-4x(6x2-3x+7).
【學(xué)生活動(dòng)】 通過(guò)剛才的練習(xí),大家互相交流,總結(jié)出提取公因式的一般步驟和容易出現(xiàn)的問(wèn)題.
總結(jié):提取公因式的步驟:(1)找公因式;(2)提公因式.
容易出現(xiàn)的問(wèn)題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項(xiàng)提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號(hào)時(shí),沒(méi)有把后面的因式中的每一項(xiàng)都變號(hào).
教師提醒:
(1)各項(xiàng)都含有的字母的最低次冪的積是公因式的字母部分;
(2)因式分解后括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同;
(3)若多項(xiàng)式的首項(xiàng)為“-”,則先提取“-”號(hào),然后再提取其他公因式;
(4)將分解因式后的式子再進(jìn)行整式的乘法運(yùn)算,其積應(yīng)與原式相等.
[設(shè)計(jì)意圖] 經(jīng)歷用提公因式法進(jìn)行因式分解的過(guò)程,在教師的啟發(fā)與指導(dǎo)下,學(xué)生自己歸納出提公因式的步驟及提取公因式時(shí)容易出現(xiàn)的類似問(wèn)題,為提取公因式積累經(jīng)驗(yàn).
1.提公因式法分解因式的一般形式,如:
a+b+c=(a+b+c).
這里的字母a,b,c,可以是一個(gè)系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項(xiàng)式.
2.提公因式法分解因式的關(guān)鍵在于發(fā)現(xiàn)多項(xiàng)式的公因式.
3.找公因式的一般步驟:
(1)若各項(xiàng)系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);
(2)取各項(xiàng)中相同的字母,字母的指數(shù)取最低的;
(3)所有這些因式的乘積即為公因式.
1.多項(xiàng)式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2cB.-ab2
C.-6ab2D.-6a3b2c
解析:根據(jù)確定多項(xiàng)式各項(xiàng)的公因式的方法,可知公因式為-6ab2.故選C.
2.下列用提公因式法分解因式正確的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2-3x+6=3(x2-x+2)
C.-a2+ab-ac=-a(a-b+c)
D.x2+5x-=(x2+5x)
解析:A.12abc-9a2b2=3ab(4c-3ab),錯(cuò)誤;B.3x2-3x+6=3(x2-x+2),錯(cuò)誤;D.x2+5x-=(x2+5x-1),錯(cuò)誤.故選C.
3.下列多項(xiàng)式中應(yīng)提取的公因式為5a2b的是( )
A.15a2b-20a2b2
B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b
D.5a2b4-10a3b3+15a4b2
解析:B.應(yīng)提取公因式5ab2,錯(cuò)誤;C.應(yīng)提取公因式10a2b,錯(cuò)誤;D.應(yīng)提取公因式5a2b2,錯(cuò)誤.故選A.
4.填空.
(1)5a3+4a2b-12abc=a( );
(2)多項(xiàng)式32p2q3-8pq4的公因式是 ;
(3)3a2-6ab+a= (3a-6b+1);
(4)因式分解:+n= ;
(5)-15a2+5a= (3a-1);
(6)計(jì)算:21×3.14-31×3.14= .
答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4
5.用提公因式法分解因式.
(1)8ab2-16a3b3;
(2)-15x-5x2;
(3)a3b3+a2b2-ab;
(4)-3a3-6a2+12a.
解:(1)8ab2(1-2a2b).
(2)-5x(3+x).
(3)ab(a2b2+ab-1).
(4)-3a(a2+2a-4).
第1課時(shí)
一、教材作業(yè)
【必做題】
教材第96頁(yè)隨堂練習(xí).
【選做題】
教材第96頁(yè)習(xí)題4.2.
二、課后作業(yè)
【基礎(chǔ)鞏固】
1.把多項(xiàng)式4a2b+10ab2分解因式時(shí),應(yīng)提取的公因式是 .
2.(20xx淮安中考)因式分解:x2-3x= .
3.分解因式:12x3-18x22+24x3=6x .
【能力提升】
4.把下列各式因式分解.
(1)3x2-6x;
(2)5x23-25x32;
(3)-43+162-26;
(4)15x32+5x2-20x23.
【拓展探究】
5.分解因式:an+an+2+a2n.
6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請(qǐng)你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來(lái).
【答案與解析】
1.2ab
2.x(x-3)
3.(2x2-3x+42)
4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).
5.解:原式=an1+ana2+anan=an(1+a2+an).
6.解:由題中給出的幾個(gè)式子可得出規(guī)律:n2+n=n(n+1).
本節(jié)運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過(guò)程中,使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由提公因數(shù)到提公因式,由整式乘法的逆運(yùn)算到提公因式法的概念,都是利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解.
在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問(wèn).
由于因式分解的主要目的是對(duì)多項(xiàng)式進(jìn)行恒等變形,它的作用更多的是應(yīng)用于多項(xiàng)式的計(jì)算和化簡(jiǎn),比如在以后將要學(xué)習(xí)的分式運(yùn)算、解分式方程等中都要用到因式分解的知識(shí),因此應(yīng)該注重因式分解的概念和方法的教學(xué).
隨堂練習(xí)(教材第96頁(yè))
解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).
習(xí)題4.2(教材第96頁(yè))
1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).
2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.
3.解:(1)不正確,因?yàn)樘崛〉墓蚴讲粚?duì),應(yīng)為n(2n--1). (2)不正確,因?yàn)樘崛」蚴?b后,第三項(xiàng)沒(méi)有變號(hào),應(yīng)為-b(ab-2a+3). (3)正確. (4)不正確,因?yàn)樽詈蟮慕Y(jié)果不是乘積的形式,應(yīng)為(a-2)(a+1).
提公因式法是本章的第2小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷從乘法分配律的逆運(yùn)算到提公因式的過(guò)程,讓學(xué)生體會(huì)數(shù)學(xué)中的一種主要思想——類比思想.運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過(guò)程中,可以使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由整式乘法的逆運(yùn)算到提公因式法的概念,就利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解,進(jìn)而使學(xué)生進(jìn)一步理解因式分解與整式乘法運(yùn)算之間的互逆關(guān)系.
已知方程組求7(x-3)2-2(3-x)3的值.
〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個(gè)因式,再根據(jù)方程組整體代入,使計(jì)算簡(jiǎn)便.
解:7(x-3)2-2(3-x)3
=(x-3)2[7+2(x-3)]
=(x-3)2(7+2x-6)
=(x-3)2(2x+).
由方程組可得原式=12×6=6.
因式分解教案 篇4
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題
5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣
教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題
教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。
二、知識(shí)回顧
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
。1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
。5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
。7)、2πR+2πr=2π(R+r)因式分解
2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程。
分解因式要注意以下幾點(diǎn):
(1)。分解的對(duì)象必須是多項(xiàng)式。
。2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。
。3)。要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。
動(dòng)畫演示:
場(chǎng)景一:正方形折疊演示
師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。
[學(xué)生活動(dòng):各自測(cè)量。]
鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。
動(dòng)畫演示:
場(chǎng)景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫演示:
場(chǎng)景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫演示:
場(chǎng)景四:菱形的性質(zhì)
師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的`定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形!
“有一個(gè)角是直角的菱形叫做正方形!
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
。3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識(shí)應(yīng)用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?
五、拓展應(yīng)用
1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。
五、課堂小結(jié)
今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
因式分解教案 篇5
學(xué)習(xí)目標(biāo)
1、學(xué)會(huì)用平方差公式進(jìn)行因式法分解
2、學(xué)會(huì)因式分解的而基本步驟.
學(xué)習(xí)重難點(diǎn)重點(diǎn):
用平方差公式進(jìn)行因式法分解.
難點(diǎn):
因式分解化簡(jiǎn)的過(guò)程
自學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)
看一看
平方差公式:
平方差公式的逆運(yùn)用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項(xiàng)式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項(xiàng)式-1+0.04a2分解因式的結(jié)果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡(jiǎn)便方法計(jì)算:3492-2512.
想一想
你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。
____________________________________________________________________________________
Xkb1.com預(yù)習(xí)展示一:
1、下列多項(xiàng)式能否用平方差公式分解因式?
說(shuō)說(shuō)你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應(yīng)用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
、賦4-81y4
②2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長(zhǎng)方形土地。同學(xué)們,你能幫助張老漢算出這塊長(zhǎng)方形土地的長(zhǎng)和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項(xiàng)式x4-y4因式分解的結(jié)果來(lái)設(shè)置密碼,當(dāng)取x=9,y=9時(shí),可得一個(gè)六位數(shù)的密碼“018162”.你想知道這是怎么來(lái)的嗎?
小明選用多項(xiàng)式4x3-xy2,取x=10,y=10時(shí)。用上述方法產(chǎn)生的密碼是什么?(寫出一個(gè)即可)
拓展提高:
若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請(qǐng)說(shuō)明理由.
教后反思考察利用公式法因式分解的`題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的。
【因式分解教案】相關(guān)文章:
因式分解教案設(shè)計(jì)12-16
因式分解的教案設(shè)計(jì)10-07
初中數(shù)學(xué)因式分解教案08-28
初中數(shù)學(xué)《因式分解》優(yōu)秀教案09-03
公式法因式分解教案設(shè)計(jì)10-08
初中數(shù)學(xué)《整式乘除與因式分解》教案09-06
小學(xué)數(shù)學(xué)因式分解教案思路設(shè)計(jì)10-01
整式乘法與因式分解評(píng)研課教案12-16