數(shù)學(xué)的知識點(diǎn)總結(jié)
在學(xué)習(xí)中,大家對知識點(diǎn)應(yīng)該都不陌生吧?知識點(diǎn)就是掌握某個問題/知識的學(xué)習(xí)要點(diǎn)。那么,都有哪些知識點(diǎn)呢?以下是小編精心整理的數(shù)學(xué)的知識點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學(xué)的知識點(diǎn)總結(jié)1
1.有理數(shù):
。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
。2)有理數(shù)的分類:① ②
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。
3.相反數(shù):
。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對值:
。1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;
5.有理數(shù)比大。海1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。
6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1,a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。
7.有理數(shù)加法法則:
。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
。3)一個數(shù)與0相加,仍得這個數(shù)。
8.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。
11.有理數(shù)乘法的運(yùn)算律:
。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
。3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),。
13.有理數(shù)乘方的法則:
。1)正數(shù)的任何次冪都是正數(shù);
。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
(1)求相同因式積的運(yùn)算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。
17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。
18.混合運(yùn)算法則:先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認(rèn)識有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問題。
體驗(yàn)數(shù)學(xué)發(fā)展的一個重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
數(shù)學(xué)的知識點(diǎn)總結(jié)2
1.數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項(xiàng).
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.
(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數(shù)列的分類
(1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.
(2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.
3.數(shù)列的通項(xiàng)公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的`,
這兩個通項(xiàng)公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4。
數(shù)學(xué)的知識點(diǎn)總結(jié)3
1、正數(shù)和負(fù)數(shù)的有關(guān)概念
(1)正數(shù):比0大的數(shù)叫做正數(shù);
負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);
0既不是正數(shù),也不是負(fù)數(shù)。
(2)正數(shù)和負(fù)數(shù)表示相反意義的量。
2、有理數(shù)的概念及分類
3、有關(guān)數(shù)軸
(1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長度。數(shù)軸是一條直線。
(2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。
(3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。
(2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。
若a、b互為相反數(shù),則a+b=0;
相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。
(3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負(fù)數(shù)。
4、任何數(shù)的絕對值是非負(fù)數(shù)。
最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。
5、利用絕對值比較大小
兩個正數(shù)比較:絕對值大的那個數(shù)大;
兩個負(fù)數(shù)比較:先算出它們的絕對值,絕對值大的反而小。
6、有理數(shù)加法
(1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.
(2)符號相反的兩數(shù)相加:當(dāng)兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當(dāng)兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.
(3)一個數(shù)同零相加,仍得這個數(shù).
加法的交換律:a+b=b+a
加法的結(jié)合律:(a+b)+c=a+(b+c)
7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡的形式,負(fù)數(shù)前面的加號可以省略不寫.
例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”
9、有理數(shù)的乘法
兩個數(shù)相乘,同號得正,異號得負(fù),再把絕對值相乘;任何數(shù)與0相乘都得0。
第一步:確定積的符號 第二步:絕對值相乘
10、乘積的符號的確定
幾個有理數(shù)相乘,因數(shù)都不為 0 時,積的符號由負(fù)因數(shù)的個數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);
當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。
11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。
正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)
倒數(shù)是本身的只有1和-1。
【數(shù)學(xué)的知識點(diǎn)總結(jié)】相關(guān)文章:
蘇教版小學(xué)數(shù)學(xué)知識點(diǎn)總結(jié)04-24
小學(xué)生的數(shù)學(xué)知識點(diǎn)總結(jié)04-24
新高一數(shù)學(xué)知識點(diǎn)總結(jié)04-24
數(shù)學(xué)分析第六章知識點(diǎn)總結(jié)04-24
防詐騙知識點(diǎn)總結(jié)04-22
初三數(shù)學(xué)考試后的總結(jié)04-19