午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-06-13 14:02:25 總結(jié) 我要投稿

關(guān)于數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  在平平淡淡的學(xué)習(xí)中,大家最不陌生的就是知識(shí)點(diǎn)吧!知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,以下是小編為大家收集的關(guān)于數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

關(guān)于數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  知識(shí)點(diǎn)1

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

  2、集合的中元素的三個(gè)特性:

  1、元素的確定性;

  2、元素的互異性;

  3、元素的無序性

  說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

 。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2、集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

 、僬Z言描述法:例:{不是直角三角形的三角形}

  ②數(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分類:

  1、有限集含有有限個(gè)元素的集合

  2、無限集含有無限個(gè)元素的.集合

  3、空集不含任何元素的集合例:{x|x2=—5}

  知識(shí)點(diǎn)2

  I、定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

 。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II、二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x—h)^2+k[拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

  III、二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV、拋物線的性質(zhì)

  1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=—b/2a。對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

  2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(—b/2a,(4ac—b^2)/4a)

  當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2—4ac=0時(shí),P在x軸上。

  3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  知識(shí)點(diǎn)3

  1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

  x=—b/2a。

  對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

  2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(—b/2a,(4ac—b’2)/4a)

  當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。

  3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

  5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b’2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ=b’2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ=b’2—4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  知識(shí)點(diǎn)4

  對(duì)數(shù)函數(shù)

  對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

  右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

  可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

 。1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

 。2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

 。3)函數(shù)總是通過(1,0)這點(diǎn)。

 。4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

 。5)顯然對(duì)數(shù)函數(shù)。

  知識(shí)點(diǎn)5

  方程的根與函數(shù)的零點(diǎn)

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。

  3、函數(shù)零點(diǎn)的求法:

 。1)(代數(shù)法)求方程的實(shí)數(shù)根;

 。2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

  4、二次函數(shù)的零點(diǎn):

  (1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

  (2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

 。3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。

  數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  1. 函數(shù)的奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2. 復(fù)合函數(shù)的有關(guān)問題

  (1)復(fù)合函數(shù)定義域求法:若已知 的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

  (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對(duì)稱性)

  (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

  (6)函數(shù)y=f(x-a)與y=f(b-x)的.圖像關(guān)于直線x= 對(duì)稱;

  4.函數(shù)的周期性

  (1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2 的周期函數(shù);

  (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);

  (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);

  5.方程k=f(x)有解 k∈D(D為f(x)的值域);

  6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.(1) (a>0,a≠1,b>0,n∈R+);

  (2) l og a N= ( a>0,a≠1,b>0,b≠1);

  (3) l og a b的符號(hào)由口訣“同正異負(fù)”記憶;

  (4) a log a N= N ( a>0,a≠1,N>0 );

  8. 判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

  12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題

  13. 恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

  數(shù)學(xué)旋轉(zhuǎn)的知識(shí)點(diǎn)

  旋轉(zhuǎn)的特征:

  (1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

  (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

  (3)旋轉(zhuǎn)前后的圖形全等。

  理解以下幾點(diǎn):

  (1)圖形中的每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心旋轉(zhuǎn)了同樣大小的角度。

  (2)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等。

  (3)圖形的大小和形狀都沒有發(fā)生改變,只改變了圖形的位置。

  學(xué)習(xí)數(shù)學(xué)小竅門

  建立數(shù)學(xué)糾錯(cuò)本。

  把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。

  限時(shí)訓(xùn)練。

  可以找一組題(比如10道選擇題),爭(zhēng)取限定一個(gè)時(shí)間完成;也可以找1道大題,限時(shí)完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗(yàn)自己在緊張狀態(tài)下的思維水平。

  數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  一:函數(shù)模型及其應(yīng)用

  本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識(shí)點(diǎn)。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實(shí)際應(yīng)用題。

  1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對(duì)數(shù)函數(shù)模型、分段函數(shù)模型等。

  2、用函數(shù)解應(yīng)用題的基本步驟是:

 。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);

  (2)設(shè)量建模;

 。3)求解函數(shù)模型;

 。4)簡(jiǎn)要回答實(shí)際問題。

  常見考法:

  本節(jié)知識(shí)在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。

  誤區(qū)提醒:

  1、求解應(yīng)用性問題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問題理解自變量的取值范圍。

  2、求解應(yīng)用性問題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。

  二:典型例題

  例1:

 。1)某種儲(chǔ)蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的`本息和(不計(jì)復(fù)利)。

 。2)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2.25%,試計(jì)算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。

  例2:

  某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位是萬元)

  (1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。

  (2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤(rùn),其利潤(rùn)約為多少萬元。(精確到1萬元)。

  數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  集合間的基本關(guān)系

  1.子集,A包含于B,記為:,有兩種可能

  (1)A是B的一部分,

  (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

  反之:集合A不包含于集合B,記作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的'子集,同時(shí)A也是C的真子集。

  2.真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

  4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

  例:集合共有個(gè)子集。(13年高考第4題,簡(jiǎn)單)

  練習(xí):A={1,2,3},B={1,2,3,4},請(qǐng)問A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來。

  解析:

  集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:

 、俨缓魏卧氐淖蛹;

 、诤1個(gè)元素的子集{1}{2}{3};

 、酆袃蓚(gè)元素的子集{1,2}{1,3}{2,3};

 、芎腥齻(gè)元素的子集{1,2,3}。

  集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫出來。

  此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場(chǎng)賣菜算了,絕對(duì)能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。

  數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  1、集合的含義:

  “集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過一個(gè)是動(dòng)詞一個(gè)是名詞而已。

  所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。

  2、集合的表示

  通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

  整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  集合的表示方法:列舉法與描述法。

 、倭信e法:{a,b,c……}

 、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

 、壅Z言描述法:例:{不是直角三角形的'三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

  3、集合的三個(gè)特性

  (1)無序性

  指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

  (2)互異性

  指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

  (3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

  數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問題;以向量知識(shí)為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

  2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。

  3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。

  4.立體幾何知識(shí):2016年已經(jīng)變得簡(jiǎn)單,2017年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的'體積計(jì)算等問題,都是重點(diǎn)考查內(nèi)容。

  5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。

  6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。

  7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。

【數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

小學(xué)數(shù)學(xué)計(jì)算知識(shí)點(diǎn)總結(jié)08-28

小學(xué)數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)09-05

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-19

大學(xué)數(shù)學(xué)實(shí)驗(yàn)知識(shí)點(diǎn)總結(jié)08-19

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-15

蘇教版數(shù)學(xué)中考知識(shí)點(diǎn)總結(jié)06-04

小學(xué)數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)07-26

高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)06-20

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-04

小學(xué)數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)07-10