午夜精品福利视频,亚洲激情专区,免费看a网站,aa毛片,亚洲色图激情小说,亚洲一级毛片,免费一级毛片一级毛片aa

高等數(shù)學(xué)大二知識點(diǎn)總結(jié)

時間:2022-11-25 12:19:22 總結(jié) 我要投稿

高等數(shù)學(xué)大二知識點(diǎn)總結(jié)

  在平時的學(xué)習(xí)中,很多人都經(jīng)常追著老師們要知識點(diǎn)吧,知識點(diǎn)在教育實(shí)踐中,是指對某一個知識的泛稱。相信很多人都在為知識點(diǎn)發(fā)愁,以下是小編幫大家整理的高等數(shù)學(xué)大二知識點(diǎn)總結(jié),僅供參考,大家一起來看看吧。

高等數(shù)學(xué)大二知識點(diǎn)總結(jié)

  高等數(shù)學(xué)大二知識點(diǎn)總結(jié) 篇1

  第一章:函數(shù)與極限

  1.理解函數(shù)的概念,掌握函數(shù)的表示方法。

  2.會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。

  3.了解函數(shù)的奇偶性、單調(diào)性、周期性、和有界性。

  4.掌握基本初等函數(shù)的性質(zhì)及圖形。

  5.理解復(fù)合函數(shù)及分段函數(shù)的有關(guān)概念,了解反函數(shù)及隱函數(shù)的概念。

  6.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù))會判別函數(shù)間斷點(diǎn)的類型。

  7.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及極限存在與左右極限間的關(guān)系。

  8.掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。

  9.掌握極限性質(zhì)及四則運(yùn)算法則。

  10.理解無窮孝無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。

  第二章:導(dǎo)數(shù)與微分

  1.理解導(dǎo)數(shù)與微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描寫一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。

  2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握初等函數(shù)的求導(dǎo)公式,了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求初等函數(shù)的微分。

  3.會求隱函數(shù)和參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。

  4.會求分段函數(shù)的導(dǎo)數(shù),了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)。

  第三章:微分中值定理與導(dǎo)數(shù)的應(yīng)用

  1.熟練運(yùn)用微分中值定理證明簡單命題。

  2.熟練運(yùn)用羅比達(dá)法則和泰勒公式求極限和證明命題。

  3.了解函數(shù)圖形的作圖步驟。了解方程求近似解的兩種方法:二分法、切線法。

  4.會求函數(shù)單調(diào)區(qū)間、凸凹區(qū)間、極值、拐點(diǎn)以及漸進(jìn)線、曲率。

  第四章:不定積分

  1.理解原函數(shù)和不定積分的概念,掌握不定積分的基本公式和性質(zhì)。

  2.會求有理函數(shù)、三角函數(shù)、有理式和簡單無理函數(shù)的不定積分

  3.掌握不定積分的分步積分法。

  4.掌握不定積分的換元積分法。

  第五章:定積分

  1.理解定積分的概念,掌握定積分的性質(zhì)及定積分中值定理。

  2.掌握定積分的換元積分法與分步積分法。

  3.了解廣義積分的概念,并會計(jì)算廣義積分,

  4.掌握反常積分的運(yùn)算。

  5.理解變上限定積分定義的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。

  第六章:定積分的應(yīng)用

  1.掌握用定積分計(jì)算一些物理量(功、引力、壓力)。

  2.掌握用定積分表達(dá)和計(jì)算一些幾何量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積和側(cè)面積、平行截面面積為已知的立體體積)及函數(shù)的平均值。

  第七章:微分方程

  1.了解微分方程及其解、階、通解、初始條件和特解等概念。

  2.會解奇次微分方程,會用簡單變量代換解某些微分方程.

  3.掌握可分離變量的微分方程,會用簡單變量代換 解某些微分方程。

  4.掌握二階常系數(shù)齊次微分方程的解法,并會解某些高于二階的常系數(shù)齊次微分方程。

  5.掌握一階線性微分方程的解法,會解伯努利方程.

  6.會用降階法解下列微分方程y=f(x,y).

  7.會解自由項(xiàng)為多項(xiàng)式,指數(shù)函數(shù),正弦函數(shù),余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。

  8.會解歐拉方程。

  第八章:空間解析幾何與向量代數(shù)

  1.理解空間直線坐標(biāo)系,理解向量的概念及其表示。

  2.掌握向量的數(shù)量、積向量積、混合積并能用坐標(biāo)表達(dá)式進(jìn)行運(yùn)算,了解兩個向量垂直、平行的條件。

  3.掌握向量的線性運(yùn)算,掌握單位向量、方向角與方向余弦,掌握向量的坐標(biāo)表達(dá)式掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算方法。

  4.掌握直線方程的求法,會利用平面、直線的相互關(guān)系解決有關(guān)問題,會求點(diǎn)到直線及點(diǎn)到平面的距離。

  5.掌握平面方程及其求法,會求平面與平面的夾角,并會用平面的相互關(guān)系(平行相交垂直)解決有關(guān)問題。

  6.理解曲面方程的概念,了解二次曲面方程及其圖形,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。

  7.了解空間曲線的概念,了解空間曲線的參數(shù)方程和一般方程,了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。

  高等數(shù)學(xué)大二知識點(diǎn)總結(jié) 篇2

  一、歷年微積分考試命題特點(diǎn)

  微積分復(fù)習(xí)的重點(diǎn)根據(jù)考試的趨勢來看,難度特別是怪題不多,就是綜合性串題。以往考試選擇填空題比較少,而今年變大了。微積分一共74分,填空、選擇占32分。第一是要把基本概念、基本內(nèi)容有一個系統(tǒng)的復(fù)習(xí),選擇填空題很重要。幾大運(yùn)算,一個是求極限運(yùn)算,還有就是求導(dǎo)數(shù),導(dǎo)數(shù)運(yùn)算占了很大的比重,這是一個很重要的內(nèi)容。當(dāng)然,還有積分,基礎(chǔ)還是要把基本積分類型基礎(chǔ)搞清楚,定積分就是對稱性應(yīng)用。二重積分就是要分成兩個累次積分。三大運(yùn)算這是我們的基礎(chǔ),應(yīng)該會算,算的概念比如說極限概念、導(dǎo)數(shù)概念、積分概念。

  二、微積分中三大主要函數(shù)

  微積分處理的對象有三大主要函數(shù),第一是初等函數(shù),這是最基礎(chǔ)的東西。在初等函數(shù)的基礎(chǔ)上對分段函數(shù),在微積分的概念里都有分段函數(shù),處理的一般方法應(yīng)該掌握。還有就是研究生考試最常見的是變限積分函數(shù)。這是我們經(jīng)常遇到的'三大基本函數(shù)。

  三、微積分復(fù)習(xí)方法

  微積分復(fù)習(xí)內(nèi)容很多,題型也多,靈活度也大。怎么辦呢?這其中有一個調(diào)理辦法,首先要看看輔導(dǎo)書、聽輔導(dǎo)課,老師給你提供幫助,會給你一個比較系統(tǒng)的總結(jié)。老師總結(jié)的東西,比如說我在考研教育網(wǎng)輔導(dǎo)課程中總結(jié)了很多的點(diǎn),每一個點(diǎn)要掌握重點(diǎn),要舉一反三搞清楚。從具體大的題目來講,基本運(yùn)算是考試的重要內(nèi)容。應(yīng)用方面,無非是在工科強(qiáng)調(diào)物理應(yīng)用,比如說旋轉(zhuǎn)體的面積、體積等等。在經(jīng)濟(jì)里面的經(jīng)濟(jì)運(yùn)用,彈性概念、邊際是經(jīng)濟(jì)學(xué)的重要概念,包括經(jīng)濟(jì)的函數(shù)。還有一個更應(yīng)該掌握的,比如集合、旋轉(zhuǎn)體積應(yīng)用面等等,大的題目都是在經(jīng)濟(jì)基礎(chǔ)上延伸出的問題,只有數(shù)學(xué)化了之后,才能處理數(shù)學(xué)模型。

  還有中值定理,還有微分學(xué)的應(yīng)用,比如說單調(diào)性、凹凸性的討論、不等式證明等等。應(yīng)用部分包括證明推斷的內(nèi)容。

  簡單概括一下就是三個基本函數(shù)要搞清楚,三大運(yùn)算的基礎(chǔ)要搞熟,概念點(diǎn)要看看參考書地都有系統(tǒng)的總結(jié),哪些點(diǎn)在此就不一一列了。計(jì)算題、應(yīng)用題、函數(shù)微分學(xué)延伸出的證明題都要搞熟。

  高等數(shù)學(xué)大二知識點(diǎn)總結(jié) 篇3

  一、一元函數(shù)積分學(xué)

  (一)不定積分

  1.知識范圍

  (1)不定積分

  原函數(shù)與不定積分的定義原函數(shù)存在定理不定積分的性質(zhì)

  (2)基本積分公式

  (3)換元積分法

  第一換元法(湊微分法)第二換元法

  (4)分部積分法

  (5)一些簡單有理函數(shù)的積分

  2.要求

  (1)理解原函數(shù)與不定積分的概念及其關(guān)系,掌握不定積分的性質(zhì),了解原函數(shù)存在定理。

  (2)熟練掌握不定積分的基本公式。

  (3)熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡單的根式代換)。

  (4)熟練掌握不定積分的分部積分法。

  (5)會求簡單有理函數(shù)的不定積分。

  (二)定積分

  1.知識范圍

  (1)定積分的概念

  定積分的定義及其幾何意義可積條件

  (2)定積分的性質(zhì)

  (3)定積分的計(jì)算

  變上限積分牛頓—萊布尼茨(Newton-Leibniz)公式換元積分法分部積分法

  (4)無窮區(qū)間的廣義積分

  (5)定積分的應(yīng)用

  平面圖形的面積旋轉(zhuǎn)體體積物體沿直線運(yùn)動時變力所作的功

  2.要求

  (1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件。

  (2)掌握定積分的基本性質(zhì)。

  (3)理解變上限積分是變上限的函數(shù),掌握對變上限定積分求導(dǎo)數(shù)的方法。

  (4)熟練掌握牛頓—萊布尼茨公式。

  (5)掌握定積分的換元積分法與分部積分法。

  (6)理解無窮區(qū)間的廣義積分的概念,掌握其計(jì)算方法。

  (7)掌握直角坐標(biāo)系下用定積分計(jì)算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體體積。

  會用定積分求沿直線運(yùn)動時變力所作的功。

  二、向量代數(shù)與空間解析幾何

  (一)向量代數(shù)

  1.知識范圍

  (1)向量的概念

  向量的定義向量的模單位向量向量在坐標(biāo)軸上的投影向量的坐標(biāo)表示法向量的方向余弦

  (2)向量的線性運(yùn)算

  向量的加法向量的減法向量的數(shù)乘

  (3)向量的數(shù)量積

  二向量的夾角二向量垂直的充分必要條件

  (4)二向量的向量積二向量平行的充分必要條件

  2.要求

  (1)理解向量的概念,掌握向量的坐標(biāo)表示法,會求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。

  (2)熟練掌握向量的線性運(yùn)算、向量的數(shù)量積與向量積的計(jì)算方法。

  (3)熟練掌握二向量平行、垂直的充分必要條件。

  (二)平面與直線

  1.知識范圍

  (1)常見的平面方程

  點(diǎn)法式方程一般式方程

  (2)兩平面的位置關(guān)系(平行、垂直和斜交)

  (3)點(diǎn)到平面的距離

  (4)空間直線方程

  標(biāo)準(zhǔn)式方程(又稱對稱式方程或點(diǎn)向式方程)一般式方程參數(shù)式方程

  (5)兩直線的位置關(guān)系(平行、垂直)

  (6)直線與平面的位置關(guān)系(平行、垂直和直線在平面上)

  2.要求

  (1)會求平面的點(diǎn)法式方程、一般式方程。會判定兩平面的垂直、平行。會求兩平面間的夾角。

  (2)會求點(diǎn)到平面的距離。

  (3)了解直線的一般式方程,會求直線的標(biāo)準(zhǔn)式方程、參數(shù)式方程。會判定兩直線平行、垂直。

  (4)會判定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。

  (三)簡單的二次曲面

  1.知識范圍

  球面母線平行于坐標(biāo)軸的柱面旋轉(zhuǎn)拋物面圓錐面橢球面

  2.要求

  了解球面、母線平行于坐標(biāo)軸的柱面、旋轉(zhuǎn)拋物面、圓錐面和橢球面的方程及其圖形。

  三、多元函數(shù)微積分學(xué)

  (一)多元函數(shù)微分學(xué)

  1.知識范圍

  (1)多元函數(shù)

  多元函數(shù)的定義二元函數(shù)的幾何意義二元函數(shù)極限與連續(xù)的概念

  (2)偏導(dǎo)數(shù)與全微分

  偏導(dǎo)數(shù)全微分二階偏導(dǎo)數(shù)

  (3)復(fù)合函數(shù)的偏導(dǎo)數(shù)

  (4)隱函數(shù)的偏導(dǎo)數(shù)

  (5)二元函數(shù)的無條件極值與條件極值

  2.要求

  (1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會求二次函數(shù)的表達(dá)式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對計(jì)算不作要求)。

  (2)理解偏導(dǎo)數(shù)概念,了解偏導(dǎo)數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。

  (3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計(jì)算方法。

  (4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。

  (5)會求二元函數(shù)的全微分。

  (6)掌握由方程所確定的隱函數(shù)的一階偏導(dǎo)數(shù)的計(jì)算方法。

  (7)會求二元函數(shù)的無條件極值。會用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。

  (二)二重積分

  1.知識范圍

  (1)二重積分的概念

  二重積分的定義二重積分的幾何意義

  (2)二重積分的性質(zhì)

  (3)二重積分的計(jì)算

  (4)二重積分的應(yīng)用

  2.要求

  (1)理解二重積分的概念及其性質(zhì)。

  (2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計(jì)算方法。

  (3)會用二重積分解決簡單的應(yīng)用問題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質(zhì)量)。

  四、無窮級數(shù)

  (一)數(shù)項(xiàng)級數(shù)

  1.知識范圍

  (1)數(shù)項(xiàng)級數(shù)

  數(shù)項(xiàng)級數(shù)的概念級數(shù)的收斂與發(fā)散級數(shù)的基本性質(zhì)級數(shù)收斂的必要條件

  (2)正項(xiàng)級數(shù)收斂性的判別法

  比較判別法比值判別法

  (3)任意項(xiàng)級數(shù)交錯級數(shù)絕對收斂條件收斂萊布尼茨判別法

  2.要求

  (1)理解級數(shù)收斂、發(fā)散的概念。掌握級數(shù)收斂的必要條件,了解級數(shù)的基本性質(zhì)。

  (2)掌握正項(xiàng)級數(shù)的比值判別法。會用正項(xiàng)級數(shù)的比較判別法。

  (3)掌握幾何級數(shù)、調(diào)和級數(shù)與級數(shù)的收斂性。

  (4)了解級數(shù)絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。

  (二)冪級數(shù)

  1.知識范圍

  (1)冪級數(shù)的概念

  收斂半徑收斂區(qū)間

  (2)冪級數(shù)的基本性質(zhì)

  (3)將簡單的初等函數(shù)展開為冪級數(shù)

  2.要求

  (1)了解冪級數(shù)的概念。

  (2)了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項(xiàng)求導(dǎo)與逐項(xiàng)積分)。

  (3)掌握求冪級數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點(diǎn))的方法。

  (4)會運(yùn)用麥克勞林(Maclaurin)公式,將一些簡單的初等函數(shù)展開為冪級數(shù)。

  五、常微分方程

  (一)一階微分方程

  1.知識范圍

  (1)微分方程的概念

  微分方程的定義階解通解初始條件特解

  (2)可分離變量的方程

  (3)一階線性方程

  2.要求

  (1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。

  (2)掌握可分離變量方程的解法。

  (3)掌握一階線性方程的解法。

  (二)可降價方程

  1.知識范圍

  (1)型方程

  (2)型方程

  2.要求

  (1)會用降階法解型方程。

  (2)會用降階法解型方程。

  (三)二階線性微分方程

  1.知識范圍

  (1)二階線性微分方程解的結(jié)構(gòu)

  (2)二階常系數(shù)齊次線性微分方程

  (3)二階常系數(shù)非齊次線性微分方程

  2.要求

  (1)了解二階線性微分方程解的結(jié)構(gòu)。

  (2)掌握二階常系數(shù)齊次線性微分方程的解法。

  (3)掌握二階常系數(shù)非齊次線性微分方程的解法。

  考試形式及試卷結(jié)構(gòu)

  試卷總分:150分

  考試時間:150分鐘

  考試方式:閉卷,筆試

  試卷內(nèi)容比例:

  函數(shù)、極限和連續(xù)約15%

  一元函數(shù)微分學(xué)約25%

  一元函數(shù)積分學(xué)約20%

  多元函數(shù)微積分(含向量代數(shù)與空間解析幾何)約20%

  無窮級數(shù)約10%

  常微分方程約10%

  試卷題型比例:

  選擇題約15%

  填空題約25%

  解答題約60%

  試題難易比例:

  容易題約30%

  中等難度題約50%

  較難題約20%

  高等數(shù)學(xué)大二知識點(diǎn)總結(jié) 篇4

  函數(shù)、極限與連續(xù)

  重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個數(shù)、確定方程在給定區(qū)間上有無實(shí)根。

  一元函數(shù)微分學(xué)

  重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。

  一元函數(shù)積分學(xué)

  重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。

  向量代數(shù)與空間解析幾何(數(shù)一)

  主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。

  多元函數(shù)微分學(xué)

  重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。

  多元函數(shù)積分學(xué)

  重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。

  無窮級數(shù)(數(shù)一、數(shù)三)

  重點(diǎn)考查正項(xiàng)級數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級數(shù)絕對收斂和條件收斂的判別、冪級數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級數(shù)在特定點(diǎn)的展開問題。

  常微分方程及差分方程

  重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會伯努利方程、歐拉公式等。

  高等數(shù)學(xué)大二知識點(diǎn)總結(jié) 篇5

  1.角的定義:有公共端點(diǎn)的兩條射線組成的圖形叫角。這個公共端點(diǎn)是角的頂點(diǎn),兩條射線為角的兩邊。

  2.角有以下的表示方法:

  (1)用三個大寫字母及符號“∠”表示.三個大寫字母分別是頂點(diǎn)和兩邊上的任意點(diǎn),頂點(diǎn)的字母必須寫在中間。

  (2)用一個大寫字母表示.這個字母就是頂點(diǎn).當(dāng)有兩個或兩個以上的角是同一個頂點(diǎn)時,不能用一個大寫字母表示。

  (3)用一個數(shù)字或一個希臘字母表示.在角的內(nèi)部靠近角的頂點(diǎn)處畫一弧線,寫上希臘字母或數(shù)字.如圖的兩個角,分別記作∠α、∠1。

  3.以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進(jìn)制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。

  4.角的平分線:一般地,從一個角的頂點(diǎn)出發(fā),把這個角分成兩個相等的角的射線,叫做這個角的平分線。

  5.如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角;如果兩個角的和等于180度(平角),就說這兩個叫互為補(bǔ)角,即其中每一個角是另一個角的補(bǔ)角。

  6.同角(等角)的補(bǔ)角相等;同角(等角)的余角相等。

  高等數(shù)學(xué)大二知識點(diǎn)總結(jié) 篇6

  分層抽樣

  先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個個同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標(biāo)準(zhǔn)

  (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

  (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  分層的比例問題

  (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

  (1)定義:

  對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn)。

  (2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:

  方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)。

  (3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

  二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系

  三二分法

  對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。

  1、函數(shù)的零點(diǎn)不是點(diǎn):

  函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個數(shù),而不是一個點(diǎn).在寫函數(shù)零點(diǎn)時,所寫的一定是一個數(shù)字,而不是一個坐標(biāo)。

  2、對函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):

  (1)、f(x)在[a,b]上連續(xù);

  (2)、f(a)·f(b)<0;

  (3)、在(a,b)內(nèi)存在零點(diǎn)。

  這是零點(diǎn)存在的一個充分條件,但不必要。

  3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點(diǎn)之間的所有函數(shù)值保持同號。

  利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。

  四判斷函數(shù)零點(diǎn)個數(shù)的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,則有幾個解就有幾個零點(diǎn)。

  2、零點(diǎn)存在性定理法:

  利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點(diǎn)。

  3、數(shù)形結(jié)合法:

  轉(zhuǎn)化為兩個函數(shù)的圖象的交點(diǎn)個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點(diǎn)的個數(shù),其中交點(diǎn)的個數(shù),就是函數(shù)零點(diǎn)的個數(shù)。

  已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法

  1、直接法:

  直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

  2、分離參數(shù)法:

  先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。

  3、數(shù)形結(jié)合法:

  先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

【高等數(shù)學(xué)大二知識點(diǎn)總結(jié)】相關(guān)文章:

高等數(shù)學(xué)知識點(diǎn)總結(jié)05-05

高等數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)08-15

高等數(shù)學(xué)重要知識點(diǎn)總結(jié)04-25

高等數(shù)學(xué)基本知識點(diǎn)總結(jié)04-25

高等數(shù)學(xué)重點(diǎn)知識點(diǎn)總結(jié)04-25

?聘叩葦(shù)學(xué)知識點(diǎn)總結(jié)04-25

大專高等數(shù)學(xué)知識點(diǎn)總結(jié)04-25

大學(xué)高等數(shù)學(xué)知識點(diǎn)總結(jié)04-25

高等數(shù)學(xué)二知識點(diǎn)總結(jié)04-25